簡易檢索 / 詳目顯示

研究生: 洪加泰
Hung, Chia-Tai
論文名稱: 染色質重塑蛋白SMARCA5在複製壓力下的功能探討
The function of SMARCA5 during replication stress
指導教授: 廖泓鈞
Liaw, Hung-jiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 47
中文關鍵詞: 複製叉穩定性複製叉保護機制SMARCA
外文關鍵詞: SMARCA5, fork stability, fork protection
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 染色質重塑蛋白(Chromatin remodeling complex)可以透過水解ATP催化核小體 的滑動(Sliding)及移除(Eviction),具有改變染色質結構的功能,在轉錄、複製及 DNA修復中都扮演重要的角色。
    在先前研究中發現染色質重塑蛋白SMARCA5能夠改變核小體間距、促進染色 質重組和壓縮(Compaction),以及在DSB產生時幫助募集HR相關蛋白BRCA1進行 DNA雙股斷裂修復。然而目前SMARCA5在複製壓力下對於複製叉的功能並不清楚, 因此本篇研究著重探討SMARCA5在遭遇複製壓力時對細胞的影響為何。我們的結 果顯示SMARCA5表現降低會導致SCE發生次數增加,表示當SMARCA5表現降 低後,會導致複製叉在遭遇複製壓力時無法有效進行損傷修復,最終造成DSB以及 SCE的提升。除此之外,利用DNA fiber的實驗,我們發現SMARCA5表現降低會 導致IdU/CldU的比值降低,代表複製叉的保護機制異常,表示SMARCA5可能具 有複製叉保護的功能或是能夠幫助募集複製叉保護蛋白。結論,在複製壓力下 SMARCA5能夠促進DNA損傷修復及促進複製叉的保護機制。

    Chromatin remodeling complexes catalyze nucleosome loading, sliding, and eviction through ATP hydrolysis. Since chromatin remodeling complexes can change chromatin structure, they play important roles in transcription, DNA replication, and repair. In recent studies, it was found that the chromatin remodeling protein SMARCA5 can change the distance between nucleosomes, promote chromatin recombination and compaction. During DSB repair, SMARCA5 can promote the HR-related protein BRCA1 recruitment. However, the mechanisms of SMARCA5 for DNA replication under replication stress is still not clear. Therefore, our study focuses on the function of SMARCA5 when replication fork encounter replication stress. Our results reveal that the SMARCA5-depleted cells lead to an increased frequencies of sister chromatid exchange (SCE), indicating that SMARCA5 could prevent stalled forks from collapse when encountering replication stress. The increasing frequency of collapsed forks will be ultimately repaired by homologous recombination, lead to SCE. In addition, SMARCA5-depleted cells show degradation of nascent DNA by the DNA fiber assay, indicating that SMARCA5 may take part in fork protection during replication stress. Taking together, our results reveal that SMARCA5 is able to protect stalled forks from collapse to maintain genome stability during replication stress.

    中文摘要 II Extended abstract IIII 誌謝 IX 目錄 X 圖目錄 XII 縮寫表 XIII 壹、 緒論 1 第一節 前言 1 1-1. DNA損傷反應(DNA Damage Response, DDR) 1 1-2.反向複製叉(Replication Fork reversal)及複製叉保護機制(Replication Fork protection) 1 1-3.順鉑(Cisplatin)藥物機制 2 1-4.同源重組(Homologous recombination, HR) 修復機制 3 1-5.SMARCA5 (SWI-SNF-related Matrix-associated Actin-dependent Regulator of Chromatin A5) 蛋白功能 4 第二節 研究動機與目的 6 貳、 實驗材料與方法 7 第一節 實驗材料 7 2-1-1.人類細胞株 7 第二節 實驗方法 7 2-2-1. 細胞解凍與繼代培養 7 2-2-2. Lentivirus 製備 ( Lentiviral production ) 8 2-2-3.Lentivirus 感染人類細胞 ( Lentiviral infection ) 9 2-2-4.西方墨點法( Western blot ) 10 2-2-5.姊妹染色分體互換 ( Sister chromatid exchange, SCE ) 11 2-2-6.DNA 纖維( DNA fiber ) 12 2-2-7.Recovery assay15 參、 結果 17 3-1.SMARCA5缺失導致姊妹染色分體互換(Sister chromatid exchange, SCE) 率顯著提升 18 3-2.T24-shSMARCA5細胞在面臨Cisplatin時會產生較多DNA損傷 18 3-3.SMARCA5缺失造成停滯複製叉保護功能受損19 3-4.不同複製壓力藥物處理下的機制探討 20 肆、 討論 21 伍、 參考文獻24 六、圖目錄 27

    1. Giuseppina Giglia-Mari, A. Z. a. W. V. DNA Damage Response. Cold Spring Harb Perspect Biol. 3, doi:10.1101/cshperspect.a000745 (2011).
    2. Hongwei Liao, F. J., Thomas Helleday and Songmin Ying. Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. EMBO Rep. 19, doi:10.15252/embr.201846263 (2018).
    3. Annabel Quinet, D. L., Alessandro Vindigni. Replication Fork Reversal: Players and Guardians. Mol Cell. 68, doi:10.1016/j.molcel.2017.11.022 (2017).
    4. Aydin, O. Z., Vermeulen, W. & Lans, H. ISWI chromatin remodeling complexes in the DNA damage response. Cell Cycle 13, 3016-3025, doi:10.4161/15384101.2014.956551 (2014).
    5. Jia-Lin Shiu, C.-K. W., Song-Bin Chang, Yan-Jhih Sun, Yen-Ju Chen, Chien-Chen Lai, Wen-Tai Chiu, Wen-Tsan Chang, Kyungjae Myung, Wen-Pin Su & Hungjiun Liaw. The HLTF–PARP1 interaction in the progression and stability of damaged replication forks caused by methyl methanesulfonate. Oncogenesis 9, 104, doi:10.1038/s41389-020-00289-5. (2020).
    6. Wen-Pin Su, S.-H. H., Cheng-Kuei Wu, Song-Bin Chang, Yi-Ju Lin, Wen-Bin Yang, Jan-Jong Hung, Wen-Tai Chiu, Shun-Fen Tzeng, Yau-Lin Tseng, Jang-Yang Chang, Wu-Chou Su, Hungjiun Liaw. Chronic treatment with cisplatin induces replication-dependent sister chromatid recombination to confer cisplatin-resistant phenotype in nasopharyngeal carcinoma. Oncotarget 5, 6323-6337, doi:10.18632/oncotarget.2210. (2014).
    7. Wen-Pin Su, Y.-C. H., Cheng-Kuei Wu, Sen-Huei Hsu, Jia-Lin Shiu, Jheng-Cheng Huang, Song-Bin Chang, Wen-Tai Chiu, Jan-Jong Hung, Tsung-Lin Liu, Wei-Sheng Wu, Pei-Yu Wu, Wu-Chou Su, Jang-Yang Chang & Hungjiun Liaw. Chronic treatment with cisplatin induces chemoresistance through the TIP60-mediated Fanconi anemia and homologous recombination repair pathways. Scientific Reports 7, 3879, doi:10.1038/s41598-017-04223-5 (2017).
    8. Zeina Kais, B. R., Amie Holmes, Colin O’Leary, David Kozono, Alan D. D’Andrea, and Raphael Ceccaldi. FANCD2 maintains fork stability in BRCA1/2-deficient tumors and promotes alternative end-joining DNA repair. Cell Rep. 15, 2488–2499., doi:10.1016/j.celrep.2016.05.031 (2016).
    9. Shan Qiu, G. J., Liping Cao and Jun Huang. Replication Fork Reversal and Protection. Front Cell Dev Biol., doi:10.3389/fcell.2021.670392 (2021).
    10. Lopes, K. J. N. a. M. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol. 16, doi:10.1038/nrm3935 (2015).
    11. Tchounwou, S. D. a. P. B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 740, 364-378., doi:10.1016/j.ejphar.2014.07.025. (2015).
    12. L Galluzzi, L. S., I Vitale, J Michels, I Martins, O Kepp, M Castedo & G Kroemer. Molecular mechanisms of cisplatin resistance. Oncogene 31, 1869–1883, doi:10.1038/onc.2011.384 (2012).
    13. Clarissa Ribeiro Reily Rocha, M. M. S., Annabel Quinet, Januario Bispo Cabral-Neto and Carlos Frederico Martins Menck. DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics (Sao Paulo). 73 (2018).
    14. Małgorzata Krajewska, R. S. N. F., Elisabeth G. E. de Vries, and Marcel A. T. M. van Vugt*. Regulators of homologous recombination repair as novel targets for cancer treatment. Front. Genet. 20, 96, doi:10.3389/fgene.2015.00096 (2015).
    15. Heyer, X. L. W.-D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Research 99–113 (2008).
    16. Manelyte, G. L. a. L. Chromatin Remodelers: From Function to Dysfunction. Genes (Basel). 6, 299–324. (2015).
    17. Nealia C. M. House1, M. R. K. a. C. H. F. Chromatin modifications and DNA repair: beyond double-strand breaks. Front. Genet. 5, 296, doi:10.3389/fgene.2014.00296 (2014).
    18. Debra Toiber, F. E., Karim Bouazoune, Dafne M Silberman, Lei Zhong, Peter Mulligan, Carlos Sebastian, Claudia Cosentino, Barbara Martinez-Pastor, Sofia Giacosa, Agustina D'Urso, Anders M Näär, Robert Kingston, Karsten Rippe, Raul Mostoslavsky. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell. 51, 454-468, doi:10.1016/j.molcel.2013.06.018. (2013).
    19. Nakamura, K. et al. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Molecular cell 41, 515-528 (2011).
    20. Li Lan, A. U., Satoshi Nakajima, Kotomi Hatakeyama, Mikiko Hoshi, Reiko Watanabe, Susan M Janicki, Hideaki Ogiwara, Takashi Kohno, Shin-Ichiro Kanno, Akira Yasui. The ACF1 complex is required for DNA double-strand break repair in human cells. Mol Cell. 40, 976-987, doi:10.1016/j.molcel.2010.12.003. (2010).
    21. Godelieve Smeenk, W. W. W., Jurgen A Marteijn, Martijn S Luijsterburg, Nicholas Sroczynski, Thomas Costelloe, Ron J Romeijn, Albert Pastink, Niels Mailand, Wim Vermeulen, Haico van Attikum. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. J Cell Sci. 126, 889-903., doi:10.1242/jcs.109413 (2013).
    22. Zou, A. M. a. L. DNA Damage Sensing by the ATM and ATR Kinases. Cold Spring Harb Perspect Biol. 5, doi:10.1101/cshperspect.a012716 (2013).
    23. Nadya Dimitrova, Y.-C. M. C., David L. Spector and Titia de Lange. 53BP1 promotes NHEJ of telomeres by increasing chromatin mobility. Nature 456, 524-528, doi:10.1038/nature07433 (2009).
    24. Lan-Ya Li, Y.-d. G., Xi-Sha Chen, Jin-Ming Yang, Yan Cheng. DNA Repair Pathways in Cancer Therapy and Resistance. Front Pharmacol 11, doi:10.3389/fphar.2020.629266 (2020).
    25. Andrew Seeber, M. H., Susan M Gasser. Nucleosome remodelers in double-strand break repair. Curr Opin Genet Dev. 23, doi:10.1016/j.gde.2012.12.008. (2013).

    下載圖示 校內:2024-09-05公開
    校外:2024-09-05公開
    QR CODE