| 研究生: |
張耀哲 Zhang, Yao-Zhe |
|---|---|
| 論文名稱: |
開發基於四極桿飛行時間質譜儀的原生質譜法表徵蛋白質及蛋白質複合物 Development of Q-TOF based Native Mass Spectrometry for Characterization of Proteins and Protein Complexes |
| 指導教授: |
賴思學
Lai, Szu-Hsueh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 原生質譜法 、自上而下質譜法 、四極桿飛行時間質譜儀 、蛋白質複合物 、抗體藥物複合體 |
| 外文關鍵詞: | Native MS, TDMS, Q-TOF MS, Protein complexes, Antibody-drug conjugates |
| 相關次數: | 點閱:82 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
原生質譜法主要應用於表徵蛋白質及其複合物,並提供其結構、化學計量及相互作用的資訊,是當前研究蛋白質結構和功能的有力工具。本研究回顧了原生質譜法相關的技術背景與應用,發展基於四極桿飛行時間質譜儀的原生質譜平台,也建立完整的分析流程,包含樣品製備、質譜分析及數據處理,並且進一步探討平台的優化,例如離子源的奈米電噴灑發射器尺寸、質譜儀的理論解析度和靈敏度。我們使用數種標準蛋白及抗體作為原生質譜平台測試對象,如肌紅蛋白、血紅蛋白、牛血清白蛋白、β-半乳糖苷酶、曲妥珠單抗及伴侶蛋白(GroEL)。目前,此平台已經可以量測到分子量約801千道爾頓的GroEL,顯示其對於分析大型蛋白質複合物的潛力。此外,我們也整合了原生質譜法與自上而下質譜法,可以透過原生質譜法獲得蛋白質複合物的完整質量,再藉由串聯質譜逐步將複合物分離成亞基及胺基酸片段,以獲得詳細的結構資訊。最後,我們利用此平台表徵了抗體藥物複合物,這是一類由細胞毒性藥物與抗體組成的大分子,其平均藥物抗體比是品質管控的重要指標。原生質譜法能保留抗體藥物複合體的完整結構,並根據質量推測平均藥物抗體比。總而言之,本研究建立了一個原生質譜平台,並且成功應用在蛋白質複合物的結構研究中。
Native mass spectrometry (native MS) is a powerful tool for characterizing proteins and their complexes, providing insights into their structure, stoichiometry, and interactions. This study reviews the technical background and applications of native MS, developing a native MS platform based on a quadrupole time-of-flight (Q-TOF) mass spectrometer. We established a comprehensive analysis workflow, including sample preparation, mass spectrometry analysis, and data processing, and explored platform optimization, such as the size of the nano-electrospray emitter and the theoretical resolution and sensitivity of the mass spectrometer. We tested the platform using standard proteins and antibodies, including myoglobin, hemoglobin, bovine serum albumin, β-galactosidase, trastuzumab, and chaperone protein (GroEL). The platform successfully measured GroEL with a molecular weight of approximately 801 kDa, demonstrating its potential for analyzing large protein complexes. Additionally, we integrated native MS with top-down MS (TDMS) to obtain the intact mass of protein complexes via native MS and then used tandem MS to fragment the complexes into subunits and amino acid sequences for detailed structural information. We characterized antibody-drug conjugates (ADCs) using this platform, preserving the intact structure of ADCs and estimating the average drug-to-antibody ratio, a crucial quality control metric. In summary, this study established a native MS platform successfully applied to structural studies of protein complexes.
1. Watson, J. T.; Sparkman, O. D. Introduction to mass spectrometry: instrumentation, applications, and strategies for data interpretation; John Wiley & Sons, 2007.
2. Kind, T.; Fiehn, O. Advances in structure elucidation of small molecules using mass spectrometry. Bioanalytical reviews 2010, 2, 23-60.
3. Hunt, D. F.; Yates 3rd, J.; Shabanowitz, J.; Winston, S.; Hauer, C. R. Protein sequencing by tandem mass spectrometry. Proceedings of the National Academy of Sciences 1986, 83 (17), 6233-6237.
4. McLafferty, F. W. Tandem mass spectrometry. Science 1981, 214 (4518), 280-287.
5. Mitchell Wells, J.; McLuckey, S. A. Collision‐Induced Dissociation (CID) of Peptides and Proteins. In Methods in Enzymology, Vol. 402; Academic Press, 2005; pp 148-185.
6. Tang, X. J.; Thibault, P.; Boyd, R. K. Fragmentation reactions of multiply-protonated peptides and implications for sequencing by tandem mass spectrometry with low-energy collision-induced dissociation. Analytical Chemistry 1993, 65 (20), 2824-2834.
7. Thomson, B. A.; Douglas, D.; Corr, J. J.; Hager, J. W.; Jolliffe, C. L. Improved collisionally activated dissociation efficiency and mass resolution on a triple quadrupole mass spectrometer system. Analytical chemistry 1995, 67 (10), 1696-1704.
8. Douglas, D.; French, J. B. Collisional focusing effects in radio frequency quadrupoles. Journal of the American Society for Mass Spectrometry 1992, 3 (4), 398-408.
9. Katta, V.; Chowdhury, S. K.; Chait, B. T. Use of a single-quadrupole mass spectrometer for collision-induced dissociation studies of multiply charged peptide ions produced by electrospray ionization. Analytical chemistry 1991, 63 (2), 174-178.
10. Senko, M. W.; Beu, S. C.; McLafferty, F. W. High-resolution tandem mass spectrometry of carbonic anhydrase. Analytical chemistry 1994, 66 (3), 415-417.
11. Downard, K. M.; Biemann, K. The effect of charge state and the localization of charge on the collision-induced dissociation of peptide ions. Journal of the American Society for Mass Spectrometry 1994, 5 (11), 966-975.
12. Leney, A. C.; Heck, A. J. R. Native Mass Spectrometry: What is in the Name? Journal of the American Society for Mass Spectrometry 2017, 28 (1), 5-13.
13. Fernandez de la Mora, J. Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Analytica Chimica Acta 2000, 406 (1), 93-104.
14. Siuzdak, G.; Bothner, B.; Yeager, M.; Brugidou, C.; Fauquet, C. M.; Hoey, K.; Change, C.-M. Mass spectrometry and viral analysis. Chemistry & Biology 1996, 3 (1), 45-48.
15. Lanucara, F.; Holman, S. W.; Gray, C. J.; Eyers, C. E. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nature Chemistry 2014, 6 (4), 281-294. Jurneczko, E.; Barran, P. E. How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst 2011, 136 (1), 20-28, 10.1039/C0AN00373E.
16. Covey, T.; Douglas, D. J. Collision cross sections for protein ions. Journal of the American Society for Mass Spectrometry 1993, 4 (8), 616-623. Ruotolo, B. T.; Giles, K.; Campuzano, I.; Sandercock, A. M.; Bateman, R. H.; Robinson, C. V. Evidence for Macromolecular Protein Rings in the Absence of Bulk Water. Science 2005, 310 (5754), 1658-1661. Duijn, E. v.; Barendregt, A.; Synowsky, S.; Versluis, C.; Heck, A. J. R. Chaperonin Complexes Monitored by Ion Mobility Mass Spectrometry. Journal of the American Chemical Society 2009, 131 (4), 1452-1459.
17. Smits, A. H.; Vermeulen, M. Characterizing Protein–Protein Interactions Using Mass Spectrometry: Challenges and Opportunities. Trends in Biotechnology 2016, 34 (10), 825-834.
18. Lorenzen, K.; Duijn, E. v. Native Mass Spectrometry as a Tool in Structural Biology. Current Protocols in Protein Science 2010, 62 (1), 17.12.11-17.12.17.
19. Loo, J. A.; Berhane, B.; Kaddis, C. S.; Wooding, K. M.; Xie, Y.; Kaufman, S. L.; Chernushevich, I. V. Electrospray ionization mass spectrometry and ion mobility analysis of the 20S proteasome complex. Journal of the American Society for Mass Spectrometry 2005, 16 (7), 998-1008. Videler, H.; Ilag, L. L.; McKay, A. R. C.; Hanson, C. L.; Robinson, C. V. Mass spectrometry of intact ribosomes. FEBS Letters 2005, 579 (4), 943-947. Uetrecht, C.; Versluis, C.; Watts, N. R.; Roos, W. H.; Wuite, G. J. L.; Wingfield, P. T.; Steven, A. C.; Heck, A. J. R. High-resolution mass spectrometry of viral assemblies: Molecular composition and stability of dimorphic hepatitis B virus capsids. Proceedings of the National Academy of Sciences 2008, 105 (27), 9216-9220.
20. Skinner, O. S.; Haverland, N. A.; Fornelli, L.; Melani, R. D.; Do Vale, L. H. F.; Seckler, H. S.; Doubleday, P. F.; Schachner, L. F.; Srzentić, K.; Kelleher, N. L.; et al. Top-down characterization of endogenous protein complexes with native proteomics. Nature Chemical Biology 2018, 14 (1), 36-41.
21. Rogawski, R.; Sharon, M. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chemical Reviews 2022, 122 (8), 7386-7414.
22. Rostom, A. A.; Fucini, P.; Benjamin, D. R.; Juenemann, R.; Nierhaus, K. H.; Hartl, F. U.; Dobson, C. M.; Robinson, C. V. Detection and selective dissociation of intact ribosomes in a mass spectrometer. Proceedings of the National Academy of Sciences 2000, 97 (10), 5185-5190.
23. Laganowsky, A.; Reading, E.; Allison, T. M.; Ulmschneider, M. B.; Degiacomi, M. T.; Baldwin, A. J.; Robinson, C. V. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 2014, 510 (7503), 172-175.
24. Marchand, A.; Gabelica, V. Native Electrospray Mass Spectrometry of DNA G-Quadruplexes in Potassium Solution. Journal of the American Society for Mass Spectrometry 2014, 25 (7), 1146-1154.
25. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246 (4926), 64-71.
26. Karas, M.; Bachmann, D.; Hillenkamp, F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical Chemistry 1985, 57 (14), 2935-2939.
27. Beaufour, M.; Ginguené, D.; Le Meur, R.; Castaing, B.; Cadene, M. Liquid Native MALDI Mass Spectrometry for the Detection of Protein-Protein Complexes. Journal of the American Society for Mass Spectrometry 2018, 29 (10), 1981-1994.
28. Wu, X.; Oleschuk, R. D.; Cann, N. M. Characterization of microstructured fibre emitters: in pursuit of improved nano electrospray ionization performance. Analyst 2012, 137 (18), 4150-4161, 10.1039/C2AN35249D.
29. Rayleigh, L. XX. On the equilibrium of liquid conducting masses charged with electricity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1882, 14 (87), 184-186.
30. Iribarne, J. V.; Thomson, B. A. On the evaporation of small ions from charged droplets. The Journal of Chemical Physics 1976, 64 (6), 2287-2294.
31. Iavarone, A. T.; Williams, E. R. Mechanism of Charging and Supercharging Molecules in Electrospray Ionization. Journal of the American Chemical Society 2003, 125 (8), 2319-2327.
32. Kebarle, P.; Verkerk, U. H. Electrospray: From ions in solution to ions in the gas phase, what we know now. Mass Spectrometry Reviews 2009, 28 (6), 898-917.
33. Heck, A. J. R.; van den Heuvel, R. H. H. Investigation of intact protein complexes by mass spectrometry. Mass Spectrometry Reviews 2004, 23 (5), 368-389.
34. Kitova, E. N.; El-Hawiet, A.; Schnier, P. D.; Klassen, J. S. Reliable Determinations of Protein–Ligand Interactions by Direct ESI-MS Measurements. Are We There Yet? Journal of the American Society for Mass Spectrometry 2012, 23 (3), 431-441. Konermann, L.; Ahadi, E.; Rodriguez, A. D.; Vahidi, S. Unraveling the Mechanism of Electrospray Ionization. Analytical Chemistry 2013, 85 (1), 2-9.
35. McAllister, R. G.; Metwally, H.; Sun, Y.; Konermann, L. Release of Native-like Gaseous Proteins from Electrospray Droplets via the Charged Residue Mechanism: Insights from Molecular Dynamics Simulations. Journal of the American Chemical Society 2015, 137 (39), 12667-12676.
36. Wilm, M.; Mann, M. Analytical Properties of the Nanoelectrospray Ion Source. Analytical Chemistry 1996, 68 (1), 1-8.
37. Covey, T. R.; Thomson, B. A.; Schneider, B. B. Atmospheric pressure ion sources. Mass Spectrometry Reviews 2009, 28 (6), 870-897.
38. Hu, J.; Guan, Q.-Y.; Wang, J.; Jiang, X.-X.; Wu, Z.-Q.; Xia, X.-H.; Xu, J.-J.; Chen, H.-Y. Effect of Nanoemitters on Suppressing the Formation of Metal Adduct Ions in Electrospray Ionization Mass Spectrometry. Analytical Chemistry 2017, 89 (3), 1838-1845.
39. Jordan, J. S.; Xia, Z.; Williams, E. R. Tips on Making Tiny Tips: Secrets to Submicron Nanoelectrospray Emitters. Journal of the American Society for Mass Spectrometry 2022, 33 (3), 607-611.
40. Winger, B. E.; Light-Wahl, K. J.; Ogorzalek Loo, R. R.; Udseth, H. R.; Smith, R. D. Observation and implications of high mass-to-charge ratio ions from electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry 1993, 4 (7), 536-545. Collings, B. A.; Douglas, D. J. An extended mass range quadrupole for electrospray mass spectrometry. International Journal of Mass Spectrometry and Ion Processes 1997, 162 (1), 121-127.
41. Verentchikov, A. N.; Ens, W.; Standing, K. G. Reflecting time-of-flight mass spectrometer with an electrospray ion source and orthogonal extraction. Analytical Chemistry 1994, 66 (1), 126-133.
42. Morris, H. R.; Paxton, T.; Dell, A.; Langhorne, J.; Berg, M.; Bordoli, R. S.; Hoyes, J.; Bateman, R. H. High Sensitivity Collisionally-activated Decomposition Tandem Mass Spectrometry on a Novel Quadrupole/Orthogonal-acceleration Time-of-flight Mass Spectrometer. Rapid Communications in Mass Spectrometry 1996, 10 (8), 889-896. Hernández, H.; Robinson, C. V. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nature Protocols 2007, 2 (3), 715-726.
43. Sobott, F.; Hernández, H.; McCammon, M. G.; Tito, M. A.; Robinson, C. V. A Tandem Mass Spectrometer for Improved Transmission and Analysis of Large Macromolecular Assemblies. Analytical Chemistry 2002, 74 (6), 1402-1407.
44. van den Heuvel, R. H. H.; van Duijn, E.; Mazon, H.; Synowsky, S. A.; Lorenzen, K.; Versluis, C.; Brouns, S. J. J.; Langridge, D.; van der Oost, J.; Hoyes, J.; et al. Improving the Performance of a Quadrupole Time-of-Flight Instrument for Macromolecular Mass Spectrometry. Analytical Chemistry 2006, 78 (21), 7473-7483.
45. Benjamin, D. R.; Robinson, C. V.; Hendrick, J. P.; Hartl, F. U.; Dobson, C. M. Mass spectrometry of ribosomes and ribosomal subunits. Proceedings of the National Academy of Sciences 1998, 95 (13), 7391-7395.
46. Van Berkel, W. J. H.; Van Den Heuvel, R. H. H.; Versluis, C.; Heck, A. J. R. Detection of intact megaDalton protein assemblies of vanillyl-alcohol oxidase by mass spectrometry. Protein Science 2000, 9 (3), 435-439.
47. Snijder, J.; Rose, R. J.; Veesler, D.; Johnson, J. E.; Heck, A. J. R. Studying 18 MDa Virus Assemblies with Native Mass Spectrometry. Angewandte Chemie International Edition 2013, 52 (14), 4020-4023.
48. Zhang, Z.; Pan, H.; Chen, X. Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrometry Reviews 2009, 28 (1), 147-176.
49. Perry, R. H.; Cooks, R. G.; Noll, R. J. Orbitrap mass spectrometry: Instrumentation, ion motion and applications. Mass Spectrometry Reviews 2008, 27 (6), 661-699.
50. Rose, R. J.; Damoc, E.; Denisov, E.; Makarov, A.; Heck, A. J. R. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nature Methods 2012, 9 (11), 1084-1086.
51. Rosati, S.; Yang, Y.; Barendregt, A.; Heck, A. J. R. Detailed mass analysis of structural heterogeneity in monoclonal antibodies using native mass spectrometry. Nature Protocols 2014, 9 (4), 967-976.
52. van de Waterbeemd, M.; Lössl, P.; Gautier, V.; Marino, F.; Yamashita, M.; Conti, E.; Scholten, A.; Heck, A. J. R. Simultaneous Assessment of Kinetic, Site-Specific, and Structural Aspects of Enzymatic Protein Phosphorylation. Angewandte Chemie International Edition 2014, 53 (36), 9660-9664.
53. Mamyrin, B.; Karataev, V.; Shmikk, D.; Zagulin, V. The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution. Zh. Eksp. Teor. Fiz 1973, 64 (1), 82-89.
54. Schaffer, L. V.; Millikin, R. J.; Miller, R. M.; Anderson, L. C.; Fellers, R. T.; Ge, Y.; Kelleher, N. L.; LeDuc, R. D.; Liu, X.; Payne, S. H.; et al. Identification and Quantification of Proteoforms by Mass Spectrometry. PROTEOMICS 2019, 19 (10), 1800361.
55. Claesen, J.; Lermyte, F.; Sobott, F.; Burzykowski, T.; Valkenborg, D. Differences in the Elemental Isotope Definition May Lead to Errors in Modern Mass-Spectrometry-Based Proteomics. Analytical Chemistry 2015, 87 (21), 10747-10754.
56. Aquilina, J. A.; Benesch, J. L. P.; Bateman, O. A.; Slingsby, C.; Robinson, C. V. Polydispersity of a mammalian chaperone: Mass spectrometry reveals the population of oligomers in αB-crystallin. Proceedings of the National Academy of Sciences 2003, 100 (19), 10611-10616.
57. Blackwell, A. E.; Dodds, E. D.; Bandarian, V.; Wysocki, V. H. Revealing the Quaternary Structure of a Heterogeneous Noncovalent Protein Complex through Surface-Induced Dissociation. Analytical Chemistry 2011, 83 (8), 2862-2865.
58. Ben-Nissan, G.; Belov, M. E.; Morgenstern, D.; Levin, Y.; Dym, O.; Arkind, G.; Lipson, C.; Makarov, A. A.; Sharon, M. Triple-Stage Mass Spectrometry Unravels the Heterogeneity of an Endogenous Protein Complex. Analytical Chemistry 2017, 89 (8), 4708-4715.
59. Canzani, D.; Rusnac, D.-V.; Zheng, N.; Bush, M. F. Degronomics: Mapping the Interacting Peptidome of a Ubiquitin Ligase Using an Integrative Mass Spectrometry Strategy. Analytical Chemistry 2019, 91 (20), 12775-12783.
60. Belov, M. E.; Damoc, E.; Denisov, E.; Compton, P. D.; Horning, S.; Makarov, A. A.; Kelleher, N. L. From Protein Complexes to Subunit Backbone Fragments: A Multi-stage Approach to Native Mass Spectrometry. Analytical Chemistry 2013, 85 (23), 11163-11173.
61. Lössl, P.; Snijder, J.; Heck, A. J. R. Boundaries of Mass Resolution in Native Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2014, 25 (6), 906-917.