簡易檢索 / 詳目顯示

研究生: 王正易
Wang, Cheng-Yi
論文名稱: 優化、動態與可行性操作獨立混合式發電系統
Optimization, dynamics, and feasible manipulation of Stand-alone hybrid power generation systems
指導教授: 吳煒
Wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 92
中文關鍵詞: 產氫混合式發電系統質子交換膜燃料電池太陽能電池
外文關鍵詞: Hydrogen production, hybrid power system, PEM fuel cell, solar cell
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來各國大量使用化石燃料而造成全球暖化,為了減少對化石燃料的依賴,本論文結合太陽能與氫能來設計混合式發電系統。由穩態優化的結果可知以甲醇自熱的產氫程序能有效地提升氫氣產率,而產生出來的氫氣再進入質子交換膜燃料電池發電,並與太陽能電池互相輔助搭配以滿足負載需求。
    為了對甲醇自熱重組反應有進一步的了解,本研究使用ASPEN PLUS軟體來模擬產氫製程,由穩態分析的結果找到最佳操作條件,再透過動態模擬進行干擾消除與氫氣設定點追蹤,可了解隨負載改變時,對氫氣產率所造成的影響。燃料電池與太陽能電池參數是由文獻中所記載的數學模型以方塊圖模式建立在MATLAB/Simulink,藉此得知其電壓、電流與功率隨負載改變時的變化情形。
    綜合以上結果,本研究成功模擬出甲醇自熱產氫之動態程序,並以台灣地區家庭用電負載為背景,分析混合式發電系統在各時段下的發電情形。

    In recent years, the global warming has become important issue due of using excessive fossil fuels. In order to reduce the usage amount in fossil fuels, a design of combination solar energy and hydrogen energy for hybrid power generation system in this study. Considering the steady state process, the results indicated that the hydrogen yield can be improved to a certain content in terms of the autothermal reforming of methanol process. Moreover, a combination of PEM fuel cell and solar cell is a novel design to obtain the load requirement.
    The present study employed Aspen Plus to simulate hydrogen production process to gain a fundamental insight into autothermal reforming of methanol. At first, We obtain the optimal operation conditions in steady state process, and then remove the disturbance and the tracer of hydrogen set point in dynamic process. Therefore, We can understand the change of loads how to influence hydrogen yield. Than using MATLAB/Simulink to get a block diagram of the mathematical model to simulation each power generation system, analysis the dynamic of its components that change with the load requirements of its voltage, current, power, efficiency and other changes.
    According to the results above, dynamic simulation of autothermal reforming of methanol is successfully established in this study. Based on the domestic power consumption in Taiwan, the power generation in hybrid power system is investigated with different time interval.

    目 錄 第一章 緒論 1 1.1前言 1 1.2重組器產氫系統 2 1.3太陽能光伏電池 3 1.4燃料電池 4 1.5鋰離子電池 6 1.6文獻回顧與研究動機 7 第二章 理論與數學模型的建立 8 2.1太陽能光伏電池 8 2.1.1 基本介紹 8 2.1.2 數學模型 9 2.2質子交換膜燃料電池 12 2.2.1基本介紹 12 2.2.2數學模型之假設 13 2.2.3數學模型 14 2.2.4 計算燃料消耗量 22 2.3重組器產氫製程 23 2.3.1乙醇重組反應 23 2.3.2甲醇重組反應 24 2.4其他單元之數學模式 26 2.4.1水煤氣反應器 26 2.4.2燃燒器(Combustor) 26 2.4.3熱交換器(Heat Exchanger, HEX) 26 2.5 鋰離子電池(Lithium-ion Battery) 29 2.6 電力轉換系統 31 2.6.1升壓式直流-直流轉換器 31 2.6.2直流-交流轉換器 32 2.7 發電效率 38 2.7.1光伏電池之發電效率 38 2.7.2質子交換膜燃料電池發電效率 39 2.7.3其他單元之發電效率 39 2.8 控制策略 40 2.8.1Aspen Dynamic動態系統介紹 40 2.8.2 Pressure-Driven 40 2.8.3 Flow-Driven 40 2.8.4控制器簡介 41 第三章 產氫製程之穩態分析 .44 3.1 蒸氣重組反應 44 3.1.1蒸氣重組產氫之流程 44 3.1.2乙醇蒸氣重組 45 3.1.3甲醇蒸氣重組 48 3.1.4蒸氣重組之比較 51 3.2 自熱重組反應 53 3.2.1甲醇自熱產氫之流程 53 3.2.2甲醇自熱反應 54 3.2.3甲醇重組與自熱之比較 58 3.3 穩態分析之結果討論 59 第四章 混合式發電系統之動態模擬 61 4.1甲醇自熱產氫之動態分析 61 4.1.1 開環路測試 61 4.1.2 SISO干擾消除 65 4.1.3 氫氣設定點追蹤 71 4.2混合式發電系統設計 75 4.2.1 模擬條件 76 4.2.2 動態模擬 76 4.2.3 質子交換膜燃料電池動態模擬分析 79 4.2.4 鋰電池電力調配 82 4.2.5 電力轉換系統 83 4.2.6 各電池之發電功率 86 4.2.7 混合式發電系統效率 87 第五章 結論與未來展望 89 參考文獻 90

    [1] J.J Hwang, L.K Lai, W. Wu, W.R. Chang, “Dynamic modeling of a photovoltaic hydrogen fuel cell”, Journal of Hydrogen Energy 34 (2009) 9531-9542.
    [2] J.E. Larminie and A. Dicks, Fuel Cell Systems Explained, Chichester,U.K.:Wiley,2000.
    [3] I. Uriz, G. Arzamendi , E. Lopez, J. Llorca , L.M Gandia(2011), “Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels”, Chemical Engineering Journal 167,pp. 603-609.
    [4] Martha Ouzounidou, Dimitris Ipsakis ,Spyros Voutetakis(2009), “A combined methanol autothermal steam reforming and PEM fuel cell pilot plant unit: Experimental and simulation studies”, Energy 34,pp. 1733-1743.
    [5] Tuan Amran Tuan Abdullah, Hydrogen Production From Catalytic Ethanol Reforming In Supercritical Water.
    [6] 顧鴻濤,太陽能電池元件導論,民國97年,全威圖書。
    [7] 黃鎮江,燃料電池,民國92年,全華科技圖書。
    [8] Lucas Nieto Degliuomini, Sebastian Biset, Patricio Luppi, Marta S. Basualdo(2012), “A rigorous computational model for hydrogen production from bio-ethanol to feed a fuel cell stack”,International Journal of Hydrogen Energy 37, 3108-3129.
    [9] Shen Jian-bin, Tang You-gen, Liang Yi-zeng, Tan Xin-xin(2008), “Relationship between initial efficiency and structure parameters of carbon anode material for Li-ion battery”,J. Cent. South Univ.technol 15,484-487.
    [10] Dongsheng Ma, Wing-Hung Ki, Chi-Ying Tsui and Philip K. T. Mok(2003), “A Single –Inductor Dual-Output Integrated DC/DC Boost Converter for Variable Voltage Scheduling”,Department of Electrical and Electronic Engineering The Hong Kong University of Science and Technology.
    [11] Wagdy R. Anis(1992), “Stepped sine wave DC/AC inverter”, Solar Energy Materials and Solar Cells 28,123-130.
    [12] Choi, Y., Stenger, H. G. (2005), “Kinetics, simulation and optimization of methanol steam reformer for fuel cell applications”, J. Power Source, 79, 81-91.
    [13] Chuang, C.-C., Chen, Y.-H., Ward, J. D., Yu, C.-C., Liu, Y.-C., Lee, C.-H. (2008). “Optimal design of an experimental methanol fuel reformer. Int. J. Hydrogen Energy”, 33, 7062-7073.
    [14] Keiski R. L., Salmi, T., Niemisto, P., Ainassaari, J., Pohjola, V. J. (1996). “Stationary and Transient Kinetics of the High-Temperature Water-Gas Shift Reaction”, Appl. Catal., A, 137, 349-370.
    [15] Lattneer, L. R., Harold, M. P. (2007), “ Autothermal reforming of methanol: experiments and modeling”,Catalysis Today, 120, 78-89.
    [16] Li, M.; Duraiswamy, K.; Knobbe, M. (2012), “ Adsorption enhanced steam reforming of methanol for hydrogen generation in conjunction with fuel cell: Process design and reactor dynamics”, Chem. Eng. Sci., 67, 26-23
    [17] Martin, M., Grossmann, I. E., (2011), “ Energy optimization of hydrogen production from lignocellulosic biomass”, Computers and Chemical Engineering, 35, 1798-1806.
    [18] Tang, H.-Y., Erickson, P., Yoon, H. C., Liao, C.-H. (2009), “Comparison of steam and autothermal reforming of methanol using a packed-bed low-cost copper catalyst”, Int. J. Hydrogen Energy, 34, 7656-7665.
    [19] Stamps, A. T., Gatzke, E. P. (2006), “Dynamic modeling of a methanol reformer—PEMFC stack system for analysis and design”, J. Power Source, 161, 356-370.
    [20] Vadlamudi, V. K., Palanki, S. (2011), “ Modeling and analysis of miniaturized methanol reformer for fuel cell powered mobile applications”, Int. J. Hydrogen Energy 2011, 36, 3364-3370.
    [21] Wang, S, Wang, S. (2006), “Energy analysis and optimization of methanol generating hydrogen system for PEMFC”, Int. J. Hydrogen Energy, 31, 1747-1755.
    [22] Wu, W., Pai, C.-C. (2009), “Control of a heat-integrated proton exchange membrane fuel cell system with methanol reforming”, J. Power Source, 194, 920-930.
    [23] Amphlett JC, Creber KAM, Davis JM, Mann RF, Peppley BA, Stokes DM(1994), “Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells”, International Journal of Hydrogen Energy,19,131–7.
    [24] Choi Y, Stenger HG(2003), “Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen”, J. Power Sources,124:432-9.
    [25] W. Subsingha, P. Sarakarn(2012), “4 Phase interleaved DC boost converter for PEMFC applications”, Procedia Engineering,32,1127-1134.

    無法下載圖示 校內:2018-08-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE