| 研究生: |
林子琪 Lin, Zi-Ci |
|---|---|
| 論文名稱: |
自然農法與慣行農法對土壤微生物多樣性的影響 Differences of impacts between natural farming and traditional farming on soil microbes |
| 指導教授: |
蔣鎮宇
Chiang, Tzen-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 多源基因體學 、坡地 、微生物農法 、16S 核糖體 RNA |
| 外文關鍵詞: | Metagenomics, slope, Natural farming, 16S ribosomal RNA |
| 相關次數: | 點閱:72 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球氣候變遷嚴重影響了動植物的生長分布和農業的生產活動,也讓人類生存的環境更極速的惡化。台灣位於亞熱帶區域,氣象變化大且災害發生率高,每年都會面臨各種自然災害所造成的鉅大的農損,而坡地農業因為地形的關係,總是首當其沖,造成許多可怕的災難,於是如何因應全球氣候變遷,在危脆的坡地從事農業生產,或是拯救崩塌或土石流的坡地,坡地土壤的穩定度與植被的物種分布都是關鍵,過往的研究顯示,土壤微生物與植物的生長分布關係甚大,但土壤微生物與坡地土壤穩定度的關聯性則需進一步分析探討,所以本篇研究將著重在分析不同場域中土壤微生物的物種及多樣性的差異,和土壤微生物與坡地土壤穩定度的關聯性,而自然農法與慣行農法對土壤微生物多樣性的影響,則是本研究的核心。
本研究以台南市東山區作為研究場域,採集了森林、微生物農法田地和崩塌地的土壤作為研究樣本,再以次世代定序和DNA分子條碼比對的大數據分析方式,藉此了解3種場域微生物群的基因體資訊。結果顯示崩塌地的菌相與森林和微生物農法田地差異最大,且擁有2種獨特的OTU,而微生物農法田地菌相雖然與森林較為接近,但2者在特定菌門的占比還是有一定的差異。此外,雖然各採集樣點的OTU數量有些許差異,但各場域的微生物多樣性和物種數量無顯著性差異。由此顯示多樣性並非造成崩塌的主因之一,而關鍵菌種的變化可能是造成坡地崩塌的可能原因之一。
Global climate change is rapidly changing the living environment of human beings, and also affects the growth and distribution of animals and plants as well as agricultural production activities. Taiwan is a mountainous island located in a subtropical region. Every year, Taiwan faces numerous serious natural disasters and agricultural losses caused by climate imbalance. The soil microbial balance in Taiwan’s ecosystems has also been impacted by climate change, a phenomenon that is more obvious on hillsides than on flat land.
In this study, we collected soil from a forest, natural farm, and landslide area in Dongshan. Through the use of metagenomics methods, we found that the microbiota in the landslide area were different from those in the forest and natural farm. In addition, the microbiota in the forest and natural farm differed at the phylum level. Biodiversity in the soil was not significantly different between the three areas, indicating that this was unlikely to have been a cause for the landslide. By contrast, the change in microbiota might be the reason for the landslide.
Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological reviews, 59(1), 143-169.
Alkimim, E. R., Caixeta, E. T., Sousa, T. V., Pereira, A. A., de Oliveira, A. C. B., Zambolim, L., & Sakiyama, N. S. (2017). Marker-assisted selection provides arabica coffee with genes from other Coffea species targeting on multiple resistance to rust and coffee berry disease. Molecular Breeding, 37(1), 6.
Baldrian, P. (2017). Forest microbiome: diversity, complexity & dynamics. FEMS Microbiology reviews, 41(2), 109-130.
Bender, S. F., Wagg, C., & van der Heijden, M. G. (2016). An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in ecology & evolution, 31(6), 440-452.
Chen, K., & Pachter, L. 2005. Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Computational Biology, 1(2), 106-112.
Cheng, W. (2009). Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C–N budgets. Soil Biology and Biochemistry, 41(9), 1795-1801.
Doornbos, R. F., van Loon, L. C., & Bakker, P. A. (2012). Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 32(1), 227-243.
Dubey, A., Malla, M. A., Khan, F., Chowdhary, K., Yadav, S., Kumar, A., ... & Khan, M. L. (2019). Soil microbiome: a key player for conservation of soil health under changing climate. Biodiversity and Conservation, 28(8), 2405-2429.
Dworkin, M. 2006. The Prokaryotes: Vol. 3: Archaea. Bacteria: Firmicutes, Actinomycetes
Diacono, M., Persiani, A., Fiore, A., Montemurro, F., & Canali, S. (2017). Agro-ecology for potential adaptation of horticultural systems to climate change: Agronomic and energetic performance evaluation. Agronomy, 7(2), 35.
Effendi, Y., Aini, N., Pambudi, A., & Sasaerila, H. Y. (2020). Metagenomics analysis of soil microbial communities in plant agroforestry system rubber tree (Hevea brasiliensis)–Ganyong (Canna sp.). In IOP Conference Series: Earth and Environmental Science (Vol. 468, No. 1, p. 012045). IOP Publishing.
Goss-Souza, D., Mendes, L. W., Borges, C. D., Rodrigues, J. L., & Tsai, S. M. (2019). Amazon forest-to-agriculture conversion alters rhizosphere microbiome composition while functions are kept. FEMS microbiology ecology, 95(3), fiz009.
Gallardo-López, F., Hernández-Chontal, M. A., Cisneros-Saguilán, P., & Linares-Gabriel, A. (2018). Development of the concept of agroecology in Europe: A review. Sustainability, 10(4), 1210.
Guida, M., Cannavacciuolo, P. L., Cesarano, M., Borra, M., Biffali, E., D’Alessandro, R., & De Felice, B. (2014). Microbial diversity of landslide soils assessed by RFLP and SSCP fingerprints. Journal of applied genetics, 55(3), 403-415.
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & biology, 5(10), R245-R249.
Köberl, M., Müller, H., Ramadan, E. M., & Berg, G. (2011). Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One, 6(9), e24452.
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547.
Krishna, M., Gupta, S., Delgado–Baquerizo, M., Morriën, E., Garkoti, S. C., Chaturvedi, R., & Ahmad, S. (2020). Successional trajectory of bacterial communities in soil are shaped by plant-driven changes during secondary succession. Scientific reports, 10(1), 1-10.
López-Mondéjar, R., Zühlke, D., Becher, D., Riedel, K., & Baldrian, P. (2016). Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Scientific reports, 6(1), 1-12.
Li, C., Hu, H. W., Chen, Q. L., Chen, D., & He, J. Z. (2020). Growth of comammox Nitrospira is inhibited by nitrification inhibitors in agricultural soils. Journal of Soils and Sediments, 20(2), 621-628.
Marschner, H., Römheld, V., Horst, W. J., & Martin, P. (1986). Root‐induced changes in the rhizosphere: Importance for the mineral nutrition of plants. Zeitschrift für Pflanzenernährung und Bodenkunde, 149(4), 441-456.
Masyagina, O. V., Evgrafova, S. Y., Kholodilova, V. V., & Prokushkin, S. G. (2020). A comparative study of soil processes in depletion and accumulation zones of permafrost landslides in Siberia. Landslides, 17(11), 2577-2587.
Ortas, I. (1997). Determination of the extent of rhizosphere soil. Communications in soil science and plant analysis, 28(19-20), 1767-1776.
Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E., & Kao-Kniffin, J. (2015). Selection on soil microbiomes reveals reproducible impacts on plant function. The ISME journal, 9(4), 980-989.
Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., ... & Ley, R. E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences, 110(16), 6548-6553.
Salliou, N., Muradian, R., & Barnaud, C. (2019). Governance of ecosystem services in agroecology: when coordination is needed but difficult to achieve. Sustainability, 11(4), 1158.
Sun, B., Gu, L., Bao, L., Zhang, S., Wei, Y., Bai, Z., ... & Zhuang, X. (2020). Application of biofertilizer containing Bacillus subtilis reduced the nitrogen loss in agricultural soil. Soil Biology and Biochemistry, 148, 107911.
Savolainen, V., Cowan, R. S., Vogler, A. P., Roderick, G. K., & Lane, R. (2005). Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1805-1811.
Turnbaugh, P. J., & Gordon, J. I. (2008). An invitation to the marriage of metagenomics and metabolomics. Cell, 134(5), 708-713.
Vaughan, E. E., Schut, F., Heilig, H. G. H. J., Zoetendal, E. G., de Vos, W. M., & Akkermans, A. D. (2000). A molecular view of the intestinal ecosystem. Current issues in intestinal microbiology, 1(1), 1-12.
Wang, C., Dong, D., Wang, H., Müller, K., Qin, Y., Wang, H., & Wu, W. (2016). Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnology for biofuels, 9(1), 1-17.
Wang, Y., & Qian, P. Y. (2009). Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PloS one, 4(10), e7401.
Yibeltal, M., Tsunekawa, A., Haregeweyn, N., Adgo, E., Meshesha, D. T., Aklog, D., ... & Liyew, M. (2019). Analysis of long-term gully dynamics in different agro-ecology settings. Catena, 179, 160-174.