| 研究生: |
陳俊達 Chen, Jun-Da |
|---|---|
| 論文名稱: |
以開衩翼尖撲翼機構分析不同自由度動作之氣動力效應 Aerodynamic Effects of Different Degrees of Freedom Movements with Slotted Wing tip Mechanism |
| 指導教授: |
葉思沂
Yeh, Szu-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 拍撲機構 、拍撲飛行 、拍撲氣動力學 、翼前緣渦流 、翅膀形態 、開衩翼尖 |
| 外文關鍵詞: | flapping mechanism, flapping flight, flapping aerodynamic, leading edge vortex, wing morphology, slotted wing tip |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雀類在低雷諾數的飛行條件下,相比於現今同等尺度的小型無人機,具有更好的穩定性及靈活性適應複雜的環境,故本研究將以多自由度機構模擬綠繡眼前飛狀態下的飛行動作。該機構可分別控制拍撲角、折曲角及手部掃掠角,藉由單純拍撲運動疊加不同關節動作,設計出六種動作模式,另外針對翼尖四根主要飛羽,設計四組不同開衩深度的羽毛。透過荷重元於風洞及真空艙內量測升阻力及慣性力,藉此了解不同關節動作對拍撲飛行所產生的氣動力機制與翼尖開衩所帶來的效益。實驗結果顯示收折翼形態與折曲動作相較於展開翼拍撲,皆能有效使整個週期的升阻力波動降低進而維持更多升力減少阻力。前者平均升力增加原來的17%,平均阻力減少13%,在僅有單自由度拍撲動作的飛行器設計上,展弦比控制在4以下會有較佳的飛行效率;後者平均升力能增加80%,平均阻力減少7%,如需有較大的負載能力,可在上拍過程中增加折曲動作來提供更多的升力,不過此時的展弦比不宜低於4以下來避免反效果。手部掃掠動作會增加下拍時的推力,能大幅減少56%的平均阻力,不過平均升力也會減少13%,如考量到較快的加速性能,可適當增加翅膀外翼掃掠動作,提供更多推力,但負載能力也會有所下降。最為接近綠繡眼完整動作的模式六,能在下拍後期產生較大翼尖速度局部加強渦流結構,平均升力增幅可達到143%,平均阻力則小幅增加6%,擁有最佳的升阻比表現,然而對於設計飛行器來說,在結構材料的選用與控制系統的設計上,會面臨極大的考驗。適當的翼尖羽毛開衩能增加較多升力及部分阻力,E=0.34能在滑行時提供最佳的升阻比,但在複雜的拍撲運動中,顯然較小的翼尖開衩羽毛有較理想的表現。透過本研究的發現,期望在未來能提供仿生拍撲飛行器設計之參考。
Under low Reynolds number flight conditions, passerines have better stability and maneuverability to adapt to complex environments than today's MAVs. Therefore, this study will use a multi-degree-of-freedom mechanism to simulate the forward flight of Zosterops japonica. The mechanism can control the flapping angle, folding angle and hand-sweeping angle respectively. By superimposing different joint motions on the simple flapping motion, six action modes are designed. In addition, four sets of primary feathers with different slot depths are designed to change the shape of wingtip morphology. The lift, drag and inertial force are measured in the wind tunnel and vacuum chamber through the load cell, to understand the aerodynamic effects of wingtip slots and different joint motions on flapping flight. The experimental results show that the swept wing shape and the folding motion can effectively reduce the lift and drag fluctuation throughout the cycle. Thereby maintaining more lift and reducing drag compared with the only flapping motion. In the design of MAVs with only single-degree-of-freedom flapping motion, an aspect ratio below 4 may have better flight efficiency. If MAVs need a larger load capacity, increasing the folding motion during the upstroke can provide more lift. At this time, the aspect ratio should not be lower than 4 to avoid adverse effects. Considering the faster acceleration performance, the sweeping motion of the outer wing can be appropriately increased to provide more thrust, but the load capacity will also be reduced. The complete motion of passerines has the best lift-to-drag ratio among all modes because a large wingtip speed strengthens the vortex. However, for the design of MAVs, the structural materials and the control system will be a big challenge. Appropriate wingtip slots can increase lift and drag. E=0.34 can provide the best lift-to-drag ratio while gliding, but obviously smaller wingtip slots have better performance in complex flapping modes. The findings of this study, it is expected to provide a reference for the design of bionic flapping aircraft in the future.
[1] D. Viieru, R. Albertani, W. Shyy, and P. G. Ifju, An introduction to flapping wing aerodynamics. New York: Cambridge University Press, 2013.
[2] John D. Anderson Jr., Inventing Flight: The Wright Brothers and Their Predecessors. Johns Hopkins University Press, 2004.
[3] M. M. O’meara and T. J. Mueller, “Laminar separation bubble characteristics on an airfoil at low Reynolds numbers,” AIAA Journal, vol. 25, no. 8, pp. 1033–1041, 1987, doi: 10.2514/3.9739.
[4] T. A. Ward, C. J. Fearday, E. Salami, and N. Binti Soin, “A bibliometric review of progress in micro air vehicle research,” International Journal of Micro Air Vehicles, vol. 9, no. 2. SAGE Publications Inc., pp. 146–165, Jun. 01, 2017. doi: 10.1177/1756829316670671.
[5] B. S. Media, “Organic evolution evidences,” Jun. 10, 2017. https://www.bioscience.com.pk/topics/zoology/item/599-organic-evolution-evidences (accessed Jun. 17, 2022).
[6] Marty Curry, “NASA - NASA Dryden Technology Facts - Winglets,” Mar. 03, 2008. https://www.nasa.gov/centers/dryden/about/Organizations/Technology/Facts/TF-2004-15-DFRC.html (accessed May 29, 2022).
[7] D. D. Chin and D. Lentink, “Flapping wing aerodynamics: From insects to vertebrates,” Journal of Experimental Biology, vol. 219, no. 7. Company of Biologists Ltd, pp. 920–932, Apr. 01, 2016. doi: 10.1242/jeb.042317.
[8] S. P. Sane, “The aerodynamics of insect flight,” Journal of Experimental Biology, vol. 206, no. 23. pp. 4191–4208, Dec. 2003. doi: 10.1242/jeb.00663.
[9] F.-O. L. S. P. S. Michael H. Dickinson, “Wing Rotation and the Aerodynamic Basis of Insect Flight,” Science (1979), vol. 284, Jun. 1999.
[10] C. Badrya, B. Govindarajan, J. D. Baeder, A. Harrington, and C. M. Kroninger, “Computational and experimental investigation of a flapping-wing micro air vehicle in hover,” J Aircr, vol. 56, no. 4, pp. 1610–1625, 2019, doi: 10.2514/1.C035239.
[11] C. Brossard, J. C. Monnier, P. Barricau, F. X. Vandernoot, F. le Sant, and L. Sant, “Principles and applications of particle image velocimetry,” Aerospace lab, 2008.
[12] M. R. Abdulwahab1, Y. H. Ali, F. J. Habeeb, A. A. Borhana, A. M. Abdelrhman, and S. M. A. Al-Obaidi, “A Review in Particle Image Velocimetry Techniques (Developments and Applications),” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage, vol. 65, pp. 213–229, 2020.
[13] A. R. Ennos, J. R. E. Hickson, and A. Roberts, “Functional morphology of the vanes of the flight feathers of the pigeon Columba livia,” Exp Biol, vol. 198, pp. 1219–1228, 1995.
[14] T. Bachmann, J. Emmerlich, W. Baumgartner, J. M. Schneider, and H. Wagner, “Flexural stiffness of feather shafts: Geometry rules over material properties,” Journal of Experimental Biology, vol. 215, no. 3, pp. 405–415, Feb. 2012, doi: 10.1242/jeb.059451.
[15] B. Klaassen Van Oorschot, R. Choroszucha, and B. W. Tobalske, “Passive aeroelastic deflection of avian primary feathers,” Bioinspir Biomim, vol. 15, no. 5, Sep. 2020, doi: 10.1088/1748-3190/ab97fd.
[16] M. di Luca, S. Mintchev, G. Heitz, F. Noca, and D. Floreano, “Designing feathered morphing wings for biohybrid aerial robots,” Interface Focus, vol. 7, no. 1, Feb. 2017, doi: 10.1098/rsfs.2016.0092.
[17] D. D. Chin, L. Y. Matloff, A. K. Stowers, E. R. Tucci, and D. Lentink, “Inspiration for wing design: How forelimb specialization enables active flight in modern vertebrates,” Journal of the Royal Society Interface, vol. 14, no. 131. Royal Society Publishing, Jun. 01, 2017. doi: 10.1098/rsif.2017.0240.
[18] C. J. Clark and R. O. Prum, “Aeroelastic flutter of feathers, flight and the evolution of non-vocal communication in birds,” Journal of Experimental Biology, vol. 218, no. 21, pp. 3520–3527, Nov. 2015, doi: 10.1242/jeb.126458.
[19] A. Feduccia and H. B. Tordoff, “Feathers of archaeopteryx: Asymmetric vanes indicate aerodynamic function,” Science (1979), vol. 203, no. 4384, pp. 1021–1022, 1979, doi: 10.1126/science.203.4384.1021.
[20] B. Klaassen van Oorschot, H. K. Tang, and B. W. Tobalske, “Phylogenetics and ecomorphology of emarginate primary feathers,” J Morphol, vol. 278, no. 7, pp. 936–947, Jul. 2017, doi: 10.1002/jmor.20686.
[21] J. P. Swaddle and R. Lockwood, “Wingtip shape and flight performance in the European Starling Sturnus vulgaris,” Ibis, vol. 145, pp. 457–464, 2003.
[22] D. B. O. Savile, “Adaptive Evolution in the Avian Wing,” Evolution (N Y), vol. 11, no. 2, pp. 212–224, 1957.
[23] R. Lockwood, J. P. Swaddle, and J. M. v Rayner, “Avian Wingtip Shape Reconsidered: Wingtip Shape Indices and Morphological Adaptations to Migration,” J Avian Biol, vol. 29, no. 3, pp. 273–292, 1998.
[24] B. W. Tobalske and K. P. Dial, “Flight kinematics of black-billed magpies and pigeons over a wide range of speeds.,” Exp Biol, Oct. 1995.
[25] K. E. Crandell and B. W. Tobalske, “Kinematics and aerodynamics of avian upstrokes during slow flight,” Journal of Experimental Biology, vol. 218, no. 16, pp. 2518–2527, Aug. 2015, doi: 10.1242/jeb.116228.
[26] M. KleinHeerenbrink, L. Christoffer Johansson, and A. Hedenström, “Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight,” J R Soc Interface, vol. 14, no. 130, May 2017, doi: 10.1098/rsif.2017.0099.
[27] Andrew I. March, Charles W. Bradley, and Ephrahim Garcia, “Aerodynamic properties of avian flight as a function of wing shape,” Fluids Engineering, 2005.
[28] K. E. Crandell and B. W. Tobalske, “Aerodynamics of tip-reversal upstroke in a revolving pigeon wing,” Journal of Experimental Biology, vol. 214, no. 11, pp. 1867–1873, Jun. 2011, doi: 10.1242/jeb.051342.
[29] M. Fluck and C. Crawford, “A lifting line model to investigate the influence of tip feathers on wing performance,” Bioinspir Biomim, vol. 9, no. 4, Dec. 2014, doi: 10.1088/1748-3182/9/4/046017.
[30] G. Sachs and M. A. Moelyadi, “Effect of slotted wing tips on yawing moment characteristics,” J Theor Biol, vol. 239, no. 1, pp. 93–100, Mar. 2006, doi: 10.1016/j.jtbi.2005.07.016.
[31] Altab Hossain, Ataur Rahman, A.K.M. P. Iqbal, M. Ariffin, and M. Mazia, “Drag Analysis of an Aircraft Wing Model with and without feather like winglet,” World Acad Sci Eng Technol, Sep. 2011.
[32] M. J. Smith, N. Komerath, R. Ames, O. Wong, and J. Pearson, “Performance analysis of a wing with multiple winglets,” AIAA, 2001.
[33] J. J. Spillman and J. E. Allen, “The use of wing tip sails to reduce vortex drag,” Dec. 1977.
[34] Graham K. Taylor, Robert L. Nudds, and Adrian L. R. Thomas, “Flying and swimming animalscruise at a Strouhal numbertuned for high power efficiency,” Nature, 2003, doi: 10.1038/nature02047.
[35] Y. H. Chang, S. C. Ting, J. Y. Su, C. Y. Soong, and J. T. Yang, “Ventral-clap modes of hovering passerines,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 87, no. 2, Feb. 2013, doi: 10.1103/PhysRevE.87.022707.
[36] J. Y. Su, S. C. Ting, Y. H. Chang, and J. T. Yang, “A passerine spreads its tail to facilitate a rapid recovery of its body posture during hovering,” J R Soc Interface, vol. 9, no. 72, pp. 1674–1684, Jul. 2012, doi: 10.1098/rsif.2011.0737.
[37] J. Y. Su, S. C. Ting, and J. T. Yang, “How a Small Bird Executes a Sharp Turning Maneuver: A Mechanical Perspective,” Exp Mech, vol. 52, no. 7, pp. 693–703, Sep. 2012, doi: 10.1007/s11340-011-9537-5.
[38] Y. H. Chang, S. C. Ting, C. C. Liu, J. T. Yang, and C. Y. Soong, “An unconventional mechanism of lift production during the downstroke in a hovering bird (Zosterops japonicus),” Exp Fluids, vol. 51, no. 5, pp. 1231–1243, Nov. 2011, doi: 10.1007/s00348-011-1145-8.
[39] P.-Y. Huang, “Analysis of the Flight in Japanese White-eye and Design of a Bird-Mimicking Mechanical Flapper,” Master thesis, National Taiwan University, Taipei, 2015.
[40] X. Meng, Y. Zhang, and G. Chen, “Ceiling effects on the aerodynamics of a flapping wing with advance ratio,” Physics of Fluids, vol. 32, no. 2, Feb. 2020, doi: 10.1063/1.5139930.
[41] T. van Truong, D. Byun, M. J. Kim, K. J. Yoon, and H. C. Park, “Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect,” Bioinspir Biomim, vol. 8, no. 3, Sep. 2013, doi: 10.1088/1748-3182/8/3/036007.
[42] J.-S. Lee, D.-K. Kim, J.-Y. Lee, and J.-H. Han, “Experimental evaluation of a flapping-wing aerodynamic model for MAV applications,” SPIE, vol. 6928, p. 69282M, Mar. 2008, doi: 10.1117/12.776169.
[43] D.-K. Kim and J.-H. Han, “Smart flapping wing using macrofiber composite actuators,” SPIE, vol. 6173, p. 61730F, Mar. 2006, doi: 10.1117/12.658117.
[44] D. K. Kim, H. il Kim, J. H. Han, and K. J. Kwon, “Experimental investigation on the aerodynamic characteristics of a bio-mimetic flapping wing with macro-fiber composites,” in Journal of Intelligent Material Systems and Structures, Mar. 2008, vol. 19, no. 3, pp. 423–431. doi: 10.1177/1045389X07083618.
[45] Wei-Han Chen, “Aerodynamic Effect of Wrist Folding on Passerines in Hovering Flight with a Multi-articulated Flapping-wing Robot,” Master thesis, National Cheng Kung University, Tainan, 2020.
[46] Wei-Zhong Su, “Aerodynamic effects of distance change between shoulder and wrist joints of passerines in forward flight using flapping wing robot,” Master thesis, National Cheng Kung University, Tainan, 2020.
[47] Deng-Yuan Wen, “Aerodynamic Effects of Slotted Wingtip on Birds in Flapping Flight Using a Biomimetic Robot,” Master thesis, National Cheng Kung University, Tainan, 2020.
[48] C. J. Pennycuick, Modelling the flying bird, vol. 5, no. C. Amsterdam: Elsevier/Academic Press, 2008. doi: 10.1016/S1875-306X(08)00005-1.
[49] S. D. Bradshaw et al., Vertebrate Flight. Berlin: Springer, 1990.
[50] I. G. Ros, L. C. Bassman, M. A. Badger, A. N. Pierson, and A. A. Biewener, “Pigeons steer like helicopters and generate down-and upstroke lift during low speed turns,” Proc Natl Acad Sci U S A, vol. 108, no. 50, pp. 19990–19995, Dec. 2011, doi: 10.1073/pnas.1107519108.
[51] A. Medina and A. R. Jones, “Leading-edge vortex burst on a low-aspect-ratio rotating flat plate,” Phys Rev Fluids, vol. 1, no. 4, Aug. 2016, doi: 10.1103/PhysRevFluids.1.044501.
[52] N. Phillips, K. Knowles, and R. J. Bomphrey, “The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing,” Bioinspir Biomim, vol. 10, no. 5, Oct. 2015, doi: 10.1088/1748-3190/10/5/056020.
[53] C. Wang, Y. Liu, D. Xu, and S. Wang, “Aerodynamic performance of a bio-inspired flapping wing with local sweep morphing,” Physics of Fluids, vol. 34, no. 5, May 2022, doi: 10.1063/5.0090718.
[54] X. Lang, B. Song, W. Yang, and X. Yang, “Effect of spanwise folding on the aerodynamic performance of three dimensional flapping flat wing,” Physics of Fluids, vol. 34, no. 2, Feb. 2022, doi: 10.1063/5.0078844.