簡易檢索 / 詳目顯示

研究生: 劉宇岍
Liu, Yu -Chien
論文名稱: 以修正GLS法與有限差分法分析凝固熱傳問題
Numerical Analysis of Solidification Heat Transfer Problems By Using Modified GLS Scheme and Finite Difference Methods
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 有限差分法GLS法可變時間步伐修正截尾誤差等效比熱法等效比熱/熱焓法史蒂芬問題紐曼問題
外文關鍵詞: GLS method, effective specific heat method, effective specific heat/enthalpy method, adaptive time step
相關次數: 點閱:129下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在凝固熱傳問題中,相變化的過程中會有潛熱釋放的效應,而潛熱釋放會影響溫度場分布。本文以有限差分法和不同的數值方法與時間步伐方法分析凝固熱傳問題。
    本文主要探討的一維暫態性熱傳、一維史蒂芬問題和一維紐曼問題,處理潛熱釋放的數值方法有等效比熱法和等效比熱/熱焓法,時間步伐方法有固定時間步伐、GLS法(ε=1e-3)、修正GLS法(ε<1e-3)和修正截尾誤差(修正LTE)。透過不同的數值方法與時間步伐方法來比較溫度場分布的準確性、潛熱釋放量和CPU運算時間,其中溫度場的準確性以總誤差(Total error)當作比較依據。
    從分析的結果發現,在求解一維暫態線性熱傳問題時,GLS法可以有效的節省CPU運算時間和維持一定的精準度;在求解一維史蒂芬問題時,等效比熱法搭配修正GLS法和修正截尾誤差確實能比GLS法求得更精準的數值解,而搭配等效比熱/熱焓法時,一階的Euler法卻比GLS法來的精準;在求解一維紐曼問題時,等效比熱法和等效比熱/熱焓法搭配修正GLS法和修正截尾誤差比GLS法精準。

    In the solidification heat transfer problems, the latent heat is released during the phase change process, affecting the distribution of temperature field. In this study, the solidification heat transfer problems are analyzed by using the finite difference methods, different numerical methods and time discretization techniques. Furthermore, the one-dimensional transient heat transfer problem, Stefan problem and Neumann problem will be investigated. The numerical methods for calculating latent heat release are the effective specific heat method and effective specific heat/enthalpy method. As for the time discretization techniques, the uniform time step, GLS methods(ε=〖10〗^(-3)), modified GLS methods(ε<〖10〗^(-3)) and modified local time truncation error scheme are utilized. In order to compare the accuracy of various numerical methods, the temperature field distribution, latent heat release and CPU computation time are important basis. From the analysis results, it is found that the GLS method can effectively save the CPU computation time and maintain precision when solving the one-dimensional transient heat transfer problem. In solving the Stefan problem, the effective specific heat method combined with the modified GLS method and modified local time truncation error scheme can be more accurate than the GLS methods. For the effective specific heat/enthalpy method, the first-order Euler methods is more precise than the GLS methods. However, when solving the Neumann problem, the effective specific heat method and the effective specific heat/enthalpy method combined with the modified GLS method and the modified local time truncation error scheme are more accurate than the GLS methods.

    摘要 I Abstract II 致謝 XVII 目錄 XVIII 表目錄 XX 圖目錄 XXI 符號介紹 XXIX 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究方法與目的 4 第二章 相變化熱傳問題與數值方法 5 2-1 暫態線性熱傳問題 5 2-2 史蒂芬問題(Stefan Problem) 6 2-3 紐曼問題(Neumann Problem) 8 2-4 等效比熱法(Effective specific heat method) 11 2-5 等效比熱/熱焓法(Effective specific heat/enthalpy method) 12 2-6 鬆弛法(Relaxation method) 13 第三章 可變時間步伐理論 18 3-1 GLS法 18 3-1-1 簡介與理論 18 3-1-2 截尾誤差與步伐計算 19 3-2 修正GLS法(Modified GLS method, MGLS) 21 3-3 修正截尾誤差(修正LTE) 22 3-3-1 定義Δtext 23 3-3-2 Δtext時間步伐的選擇 24 3-3-3 Δtext初始化 24 3-3-4 Δtext在相變化問題上之調整 25 第四章 結果與討論 26 4-1 一維暫態熱傳問題 27 4-2 史蒂芬問題 28 4-2-1 史蒂芬問題之等效比熱法固定時間步伐 29 4-2-2 史蒂芬問題之等效比熱法可變時間步伐 29 4-2-3 史蒂芬問題之等效比熱/熱焓法固定時間步伐 31 4-2-4 史蒂芬問題之等效比熱/熱焓法可變時間步伐 31 4-3 紐曼問題 33 4-3-1 紐曼問題之等效比熱法固定時間步伐 34 4-3-2 紐曼問題之等效比熱法可變時間步伐 34 4-3-3 紐曼問題之等效比熱/熱焓法固定時間步伐 36 4-3-4 紐曼問題之等效比熱/熱焓法可變時間步伐 36 第五章 結論 98 參考文獻 100

    [1] Douglas J.,Gallie T. M., On the numerical integration of a parabolic differential equation subject to a moving boundary condition, Duke Mathematical Journal 22 (1955) 557-571
    [2] Goodling J., S.,Khader M. S., Inward solidification with radiation-convection boundary condition, Jornal of Heat Transfer-Transactions of the ASME 96 (1974) 114-115.
    [3] Gupta R. S., Knmar D., A modified variable time step method for one-dimensional Stefan problem, Computer Methods in Applied Mechanics and Endineering 23 (1980) 101-109.
    [4] Gupta R. S., Knmar D., Variable time step methods for one-dimensional Stefan problem with mixed boundary condition, International Journal of Heat and Mass Transfer 24 (1981) 251-259.
    [5] Ouyang T., Tamma K. K., On adaptive time stepping approaches for thermal solidification processes, International Journal of Numerical Methods for Heat and Fluid Flow 6 (1996) 37-50.
    [6] Gresho P. M., Lee R. L., Sani R. L., On the time dependent solution of the incompressible Navier-Stokes equations in two and three dimensions, Recent Advance in Numerical Methods in Fluids, Pineridge Press, Swansea, 1980
    [7] 彭勳章, "從澆注到凝固之鑄造過程的可變時間步伐數值分析," 2010.
    [8] 許育賓, "以修正截尾誤差之可變時間步伐計算法分析相變化熱傳問題," 成功大學工程科學系學位論文, 2010.
    [9] 阮晟堯, "以有限元素法與修正GLS法分析凝固熱傳問題," 成功大學工程科學系學位論文, 2018.
    [10] Kurz W., Fisher D. J., Fundamentals of solidification, Trans Tech Publications, Switzerland, 1988.
    [11] Chalmers B., Principles of solidification, Wiley, New York, 1964.
    [12] Askar H. G., The front-tracking scheme for the one-dimensional freezing problem, International Journal for Numerical Methods in Engineering 24(1987)859-869.
    [13] J. Hsiao, "An efficient algorithm for finite-difference analyses of heat transfer with melting and solidification," Numerical Heat Transfer, vol. 8 (1985) 653-666.
    [14] A. Date, "A strong enthalpy formulation for the Stefan problem," International journal of heat and mass transfer, vol. 34 (1991) 2231-2235.
    [15] C. Swaminathan and V. Voller, "General source-based method for solidification phase change," Numerical Heat Transfer, (1992) 175-189.
    [16] T. Tszeng, Y. Im, and S. Kobayashi, "Thermal analysis of solidification by the temperature recovery method," International Journal of Machine Tools and Manufacture, vol. 29 (1989) 107-120.
    [17] R. R. Namburu and K. K. Tamma, "Effective modeling/analysis of isothermal phase change problem with emphasis on representative enthalpy architectures and finite element, "International Journal of Heat and Mass Transfer, vol. 36 (1993) 4493-4497,
    [18] Stefan J., "Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere," Annalen der Physik, vol. 278 (1891) 269-286,.
    [19] Stefan J., Über einige Problem der Theorie der Wärmeleitung, S. B. Kais. Akad. Wiss. Wien. 28(1889)473-484.
    [20] Y.-C. Liu and L.-S. Chao, "Modified effective specific heat method of solidification problems," Materials transactions, vol. 47 (2006) 2737-2744.

    下載圖示 校內:2021-08-31公開
    校外:2021-08-31公開
    QR CODE