簡易檢索 / 詳目顯示

研究生: 林昆蔚
Lin, Kuen-Wey
論文名稱: 非接觸式原子力顯微鏡探針振動分析
Vibration Analysis of Atomic Force Microscopy Probe
指導教授: 李森墉
Lee, Sen-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 68
中文關鍵詞: 非接觸模式微探針原子力顯微鏡
外文關鍵詞: atomic force microscopy, microprobe, non-contact mode
相關次數: 點閱:99下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文建構原子力顯微鏡(AFM)之微探針之動態測量數學模式。考慮具時變彈性基台,具阻尼與端點集中質量之微型樑,建立整體系統之統御偏微分運動方程和時變彈性邊界條件,以變數變換法將非齊次邊界條件轉換成齊次邊界,並提出一套解析法可有效的求解非線性邊界條件問題,此法並可廣泛應用於求解非線性邊界值問題。利用以上解法來研究非接觸量測模式(non-contact mode)之共振頻率偏移問題,當探針測量物件時,探針和表面間之非線性力作用,使得共振頻率有偏移之現象,比較在非量測時之探針共振頻率,得知共振頻率偏移量,進而推測得知精度可達 等級的表面微結構,最後,研究各種參數對暫態反應與共振頻率偏移之影響。

    The study is to establish the dynamic measuring modes of microprobes of an atomic force microscopy. The forced vibration of a non-uniform beam with the time-dependent elastic boundary conditions, damping and concentrated tip mass is considered. The governing differential equation and the associated boundary conditions are derived by using the Hamilton’s principle. The non-homogeneous boundary conditions are transformed into homogeneous ones through the procedure of change of dependent variable. A new analytical solution for the system of non-contact mode is derived to solve the problem with nonlinear boundary condition. This method can be generally applied to solve the problems with nonlinear boundary conditions. By utilizing this method, the frequency shift of non-contact mode is investigated. When the microprobe approaches the sample surface, the nonlinear interaction between tip and sample causes a resonant frequency shift of the microprobe. Thus an atomic-scale surface image can be profiled with the frequency shift. Finally, the influence of the parameters on the transient response and the resonant frequency shift are investigated.

    中文摘要 英文摘要 誌謝 目錄 表目錄 圖目錄 符號說明 第一章 緒論 1.1 前言 1.2 原子力顯微量測技術介紹 1.2.1原子力顯微鏡的操作模式 1.2.2原子力顯微術的三種操作模式優缺點 1.3 文獻回顧 1.3.1非接觸式原子力顯微術論文回顧 1.3.2 微系統之阻尼特性論文回顧 1.4 研究動機及目的 第二章 非均勻Bernoulli-Euler樑之分析 2.1 統御方程及邊界條件 2.2 無因次化統御方程及邊界條件 2.3 解法 2.3.1 變數變換法 2.3.2 特徵函數展開法 2.4 阻尼係數之物理意義 第三章 AFM探針之動態分析 3.1 物理模式之建立 3.2 探針與樣品間的作用力 3.2.1 凡得瓦爾力 3.2.2 巨觀體的勢能 3.3 解法 第四章 數值分析與討論 4.1 均勻斷面微探針之動態分析 4.2 微探針之動態分析數值結果與討論 4.3 阻尼之影響 4.4 具阻尼樑之數值分析與討論 第五章 結論 參考文獻 自述

    [1] Binnig, G., Roher, H., Gerber, H. and Weibel E. “Surface studied by scanning
    tunneling microscopy,” Physical Review Letters, Vol. 49, pp. 57-61, 1982.

    [2] Binnig, G., Quate, C. F., and Gerber, Ch., “Atomic force microscope,”
    Physical Review Letters, Vol. 56, pp. 930-933, 1986.

    [3] Holscher, H., Schwarz, U. D, Wiesendanger, R., “Calculation of the frequency
    shift in dynamic force microscopy,” applied surface science, Vol.140,
    pp. 344-351, 1999.

    [4] Sasaki, N., Tsukada, M., Tamura,R., Abe,K.,Sato,N., “Dynamics of the
    cantilever in noncontact atomic force microscopy,” Applied physics A
    Materials, Vol.66, pp. 287-291, 1998.

    [5] Rabe, U., Janser, K., and Amold,W., “Vibrations of free and surface-coupled
    force microscope cantilevers : Theory and experiment,” American institute of
    physics, Vol.67, pp. 3281-3293, 1996.

    [6] Weigert, S., Dreier, M., and Hegner, M., “Fequency shifts of cantilevers
    vibrating in various media,” Appl. phys. letter.,Vol.69, pp.2834-2836, 1996.

    [7] Fung, R. F., Huang, S. C., “Dynamic modeling and vibration analysis of the
    atomic force microscope,” transactions of ASME, Vol.123, pp. 502-509, 2001.

    [8] Sokolov, I. Y., Henderson, G. S.,Wicks, F. J., “Model dependence of AFM
    simulations in non-contact mode, ” surface science, Vol.457, pp. 267-272
    , 2000.

    [9] Kokubun, K., Murakami, H., Toda, Y. and Ono, M., “A bending and stretching
    mode crystal oscillator as friction vacuum gauge,” Vacuum, Vol. 34, pp.
    731-735, 1984.

    [10] Blom, F.R., Bouwstra, S., Elwenspoek, M. and Fluitman, J.H.J., “Dependence
    of the quality factor of micro-machined silicon beam resonators on pressure
    and geometry,” J. vac. Sci. Technol., B10, pp. 19-26, 1992.

    [11] Hirano, T., Funrehata, T., Gabriel, K. J. and Fujita, “Effect of air
    damping and suspension compliance on electrostatic comb-drive actuators with
    sub-micron gap,” Proc. 2nd Int. Symp. Measurement and Control in Robotics,
    pp. 507-512, 1992.

    [12] Murakami, Y. and Moronuki, N., “study on the design of micro-machine,” 1st
    Report, Proc. Jpn. Soc. Precision Eng., pp. 919-920, 1993.

    [13] Matsuda, R. and Fukui, S., “Asymptotic analysis of ultra-thin gas squeeze
    film lubrication for infinitely large squeeze number,” ASME Paper
    94-Trib-2, 1994.

    [14] Darling, R. B., Hivick, C., and Xu, J., “Compact analytical modeling
    squeeze film damping with arbibratrary venting conditions using a Green’s
    function approach,” Sensors and Actuators, Vol. A70, pp. 32-41, 1998.

    [15] Xu, Y. and Smith, S. T, “Determination of squeeze film damping in
    capacitance-based cantilever force probes,” Precision Engineering, Vol. 17,
    pp. 94-100, 1995.

    [16] Lee, S. Y. and Lin, S. M., “Dynamic analysis of non-uniform beams with time
    dependent elastic boundary conditions,” ASME Journal of Applied Mechanics,
    Vol. 63, pp. 474-478, 1996.

    [17] Lee, S. Y. and Kuo,Y. H., “Exact solutions for the analysis of general
    elastically restrained nonuniform beams,” ASME Journal of Applied
    Mechanics, Vol. 59, No. 2, pp. 205-212, 1992.

    [18] Israelachvili, J. N., “Intermolecular and Surface Forces,” Academic Press,
    New York, 1985.

    [19] Sarid, D., “Scanning Force Microscopy With Application to Electric,Magnetic
    and Atomic Forces,” Oxford University Press, New York, 1994.

    [20] Meirovitch, L., “Fundamentals of Vibrations,” McGraw-Hill, New York, 2001.

    [21] Rao, J. S., “Advanced Theory of Vibration,” Wiley Eastern Limited, 1992.

    [22] Hosaka, H., Itao K., Kuroda S., “Damping Characteristics of Beam-Shaped
    Micro-oscillators,” Sensors and Actuators, Vol. A70, pp. 32-41, 1998.

    [23] Lee, S. Y., Wang, W. R. and Chen, T. Y., “A General Approach on the
    Mechanical Analysis of Nonuniform Beams With Nonhomogeneous Elastic
    Boundary Conditions,” J. Vibration and Acoustics, A49, pp. 87-95, 1995.

    [24] Guggisberg, M., Bammerlin, M., Loppacher, C., Pfeiffer, O., Abdurrixit, A.,
    Barwich, V., Bennewitz, R., Baratoff, A., Meyer, E., “Separation of
    interaction by non-contact force microscopy,” Physical Review B, Vol. 61,
    pp.11151-11155, 2000

    下載圖示 校內:立即公開
    校外:2003-07-14公開
    QR CODE