研究生: |
蘇彥勳 Su, Yen-Hsun |
---|---|
論文名稱: |
金奈米粒子表面電漿子之化學鍵結效應及其對螢光閃爍影響 Surface Plasmon Resonance of Gold Nanoparticles: Effect of Chemical Bonding and its Influence on Blinking Photoluminescence |
指導教授: |
張為民
Zhang, Wei-Min |
共同指導教授: |
張世慧
Chang, Shih-Hui |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 111 |
中文關鍵詞: | 表面電漿子 、金奈米粒子 、化學鍵結效應 、螢光閃爍 |
外文關鍵詞: | Surface Plasmon Resonance, Gold Nanoparticles, Chemical Bonding, Blinking Photoluminescence |
相關次數: | 點閱:104 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
最近在第一原理的預測,在金和有共振結構之分子間,分子之Pi電子會和金屬表面電子互相共振。在本研究中,我們試圖使用表面電漿子觀察分子之Pi電子和金屬表面電子互相共振行為。我們觀察到,在玻璃基板上表面無界面活性劑金奈米粒子之表面電漿子吸收峰在638 nm。當使用自組裝方式,將表面無界面活性劑金奈米粒子黏附在玻璃基板上時,表面電漿子吸收峰分裂為615 nm和643 nm。並更進一步使用X光光電子圖譜儀(XPS)觀察其鍵結能量變化,發現金的4 f7/2軌域鍵結能量有輕微藍移的變化(~0.3 eV),但在硫的3s軌域鍵結能量有較大紅移變化(2.8 eV),由此察知Pi電子和金屬表面電子互相作用行為,其行為包含著使4 f7/2軌域鍵結能量藍移的共價鍵和使3s軌域鍵結能量紅移之Pi電子共振行為。並將共價鍵和Pi電子共振行為加入至古典偶和介電模型解釋表面電漿子吸收峰分裂現象。由此模型,Pi電子會參予金電子氣之震盪行為。及當金奈米粒子表面25 %之原子受到硫鍵結時,因偶和介電常數經過零點兩次,表面電漿子的吸收峰即會分裂。但當全部表面原子受到硫鍵結時,此時表面電漿子的吸收峰將因偶和介電常數只有經過零點一次而剩下一個。
在本研究中,我們亦討論表面電漿子對金奈米結構螢光閃爍效應之影響。我們使用不同尺寸海膽形狀金奈米粒子改變表面電漿子共振強度,以產生不同的電偏壓,改變螢光閃爍效應之反應活化能量。我們發現表面電漿共振產生之強電磁場可使螢光閃爍中亮的過程機會增加。更進一步,我們將螢光閃爍中亮的過程機會增加之海膽形狀金奈米粒子用於激發天然植物葉綠素之發光,並期待未來可用於生物發光激發器。
Recently, the effect of Pi-bonding electrons conjugating to the gold surface has been predicated by first principles. In this paper, we observe surface plasmon resonance splitting due to the covalence and Pi-bonding electrons conjugated effect. When surfactant-less Au NPs are linked on the glass substrate by sulfur, the SPR peak is split from one mode (638 nm) into two modes at 615 nm and 643 nm. The binding energy of 3s electrons for sulfur atoms has a huge red-shift in XPS peaks to confirm the Pi-bonding electrons conjugated effect. Furthermore, a proposed classical coupling dielectric function model, adding the gold-sulfur covalence bonding effect and conjugated Pi-bond electrons from sulfur to gold into the Drude model, is achieved to explain the mechanism of the SPR split phenomenon. In the extreme case, when the Au surface atoms are all covered by thiol sulfur atoms, or not covered at all by thiols, the SPR peak will not split.
The surface plasmon resonance (SPR) effect on the blinking emission of photoluminescence from noble metal nanostructures is still an open question in quantum mechanics and limits their applications. We investigate the emission intermittency of noble metal nanostructures by tuning the reaction potential threshold via SPR from different sized nano-sea-urchins (NSUs). (We study here sea-urchin-shaped nanoparticles which we refer to simply as "nano-sea-urchins" (NSUs).) The probability of “on” process in one photon luminescent emission intermittency of NSUs increases due to the strong electric field of SPR. The mechanism was explained by our proposed reaction potential threshold model. Furthermore, the ameliorated photoluminescence of NSU is strong enough to excite waterweed bioluminescence to act as in vivo bio light emitting device, which has potential applications in bio-imaging and bio-labeling.
[1] L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms”, Nano Lett. 6, 2060 (2006).
[2] E. -S. Kwak, J. Henzie, S. -H. Chang, S. K. Gray, G. C. Schatz, T. W. Odom, "Surface Plasmon Standing Waves in Large-Area Subwavelength Hole Arrays”, Nano Lett. 5, 1963 (2005).
[3] Shuford, K. L., Lee, J., Odom, T. W., Schatz, G. C., “Optical Properties of Gold Pyramidal Shells”, J. Phys. Chem. C 112, 6662 (2008).
[4] S. Link, M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver nanodots and Nanorods”, J. Phys. Chem. B 103, 8410 (1999).
[5] Kelly, K.L., K. Yamashita, “Nanostructure of silver metal produced photocatalytically in TiO2 films and the mechanism of the resulting photochromic behavior”, J. Phys. Chem. B 110, 7743 (2006).
[6] Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., Van Duyne, R. P., “Biosensing with Plasmonic Nanosensors”, Nature Mater. 7, 442 (2008).
[7] Jensen, L., Zhao, L., Schatz, G. C., “Size-Dependence of the Enhanced Raman Scattering of Pyridine Adsorbed on Agn (n = 2−8, 20) Clusters”, J. Phys. Chem. C 111, 4756 (2007).
[8] Sun, L., Crooks, R.M., Chechik, V., “Preparation of polycyclodextrin hollow spheres by templating gold nanoparticles”, Chem. Commun. 359 (2001).
[9] Brust, M., Fink, J., Bethell, D., Schiffrin, D. J., Kiely, C. J., “Synthesis and reactions of functionalised gold nanoparticles”, J. Chem. Soc. Chem. Commun. 16, 1655 (1995).
[10] Daniel, M.-C., Astruc, D., “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology”, Chem. Rev. 104, 293 (2004).
[11] Heimel, G., Romaner, L., Brédas, J. L., Zojer, E., “Interface Energetics and Level Alignment at Covalent Metal-Molecule Junctions: π-Conjugated Thiols on Gold”, Phys. Rev. Lett. 96, 19, 196806 (2006).
[12] Heimel, G., Romaner, L., Brédas, J. L., Zojer, E., “Organic/Metal Interfaces In Self-Assembled Monolayers Of Conjugated Thiols: A First-Principles Benchmark Study”, Surface Sci. 600, 19, 4548 (2006).
[13] Heimel, G., Romaner, L., Brédas, J. L., Zojer, E., “Toward Control of the Metal−Organic Interfacial Electronic Structure in Molecular Electronics: A First-Principles Study on Self-Assembled Monolayers of π-Conjugated Molecules on Noble Metals”, Nano Lett. 7, 932 (2007).
[14] Zhu, M., Aikens, C.M., Hollander, F.J., Schatz, G.C., Jin, R., “Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties”, J. Amer. Chem. Soc. 130, 5883 (2008).
[15] Heimel, G., Romaner, L., Brédas, J. L., Zojer, E., “The Interface Energetics of Self-Assembled Monolayers on Metals”, Acc. Chem. Res. 41, 721 (2008).
[16] A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht1, “Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods”, Phys. Rev. Lett. 95, 267405(2005).
[17] Bao, Y., Zhong, C., Vu, D. M., Temirov, J. P., Dyer, R. B., Martinez J. S., “Nanoparticle free synthesis of fluorescent gold nanoclusters at physiological temperature”, J. Phys. Chem. C 111, 12194 (2007).
[18] Zheng, J., Zhang, C.W., Dickson, R.M., “Highly fluorescent, water-soluble, size-tunable gold quantum dots”, Phys. Rev. Lett. 93, 077402 (2004).
[19] Frantsuzov, P., Kuno, M., Janko, B., Marcus, R. A., “Universal emission intermittency in quantum dots, nanorods, and nanowires”, Nature Phys. 4, 519 (2008).
[20] Khlebtsov, B. N., Khanadeev V. A., Khlebtsov N. G., “Observation of Extra-High Depolarized Light Scattering Spectra from Gold Nanorods”, J. Phys. Chem. C 112, 12760 (2008).
[21] Wu, H.L., Chen, C. H., Huang, M. H., “Seed-Mediated Synthesis of Branched Gold Nanocrystals Derived from the Side Growth of Pentagonal Bipyramids and the Formation of Gold Nanostars”, Chem. Mater. 21, 110 (2009).
[22] Wang, L., Guo, S.J., Zhai, J.F. , Dong, S.J., “Facile Synthesis of Platinum Nanoelectrocatalyst with Urchinlike Morphology”, J. Phys. Chem. C 112, 13372 (2008).
[23] Guo, S.J., Wang, L., Dong, S.J., Wang, E.K., “Urchinlike Gold/Platinum Hybrid Nanocatalyst with Controlled Size”, J. Phys. Chem. C 112, 13510 (2008).
[24] Zhou, P., Dai, Z. H. , Fang, M. , Huang, X.H., Bao, J.C., Gong, J.F., “Novel Dendritic Palladium Nanostructure and its Application in Biosensing”, J. Phys. Chem. C 111, 12609 (2007).
[25] K.F. Yu, K.L. Kelly, N. Sakai, T. Tatsuma, “Morphologies and surface plasmon resonance properties of monodisperse bumpy gold nanoparticles”, Langmuir 24, 5849 (2008).
[26] Y.H. Su, W.H. Lai, W.Y. Chen, M.H. Hon, S.-H. Chang SH, “ Surface plasmon resonances of gold nano-sea-urchins”, Appl. Phys. Lett. 90, 181905 (2007).
[27] O.M. Bakr, B.H. Wunsch, F. Stellacci, “High-Yield Synthesis of Multi-Branched Urchin-Like Gold Nanoparticles”, Chem. Mater. 18, 3297 (2006).
[28] Jeong, G.H., Lee, Y. W., Kim, M., Han, S.W., “High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Raman scattering properties“, J. Coll. Interf. Sci. 329, 97 (2009).
[29] Nehl, C.L., Hafner, J. H. ,“Shape-dependent Plasmon Resonances of Gold Nanoparticles“, J. Mater. Chem. 18, 2415 (2008).
[30] Su, Y. H., Teoh, L. G., Tu, S.-L., Lee, J.-H., Hon, M. H., “Photoelectric Characteristics of Natural Pigments Self-Assembly Fabricated on TiO2 /FTO Substrate”, J. Nanosci. Nanotechnol. 9, 196 (2009).
[31] Frolov, L., Rosenwaks, Y., Richter, S., Carmeli, C., Carmeli, I., “Photoelectric junctions between GaAs and photosynthetic reaction center protein”, J. Phys. Chem. C 112, 13426 (2008).
[32] Curutchet, C., Franceschetti, A., Zunger, A., Scholes, G.D., “Examining Förster Energy Transfer for Semiconductor Nanocrystalline Quantum Dot Donors and Acceptors”, J. Phys. Chem. C 112, 1336 (2008).
[33] Tanford, C. 1980, The Hydrophobic Effect, 2nd edn. Wiley, New York.
[34] Huque E. M.,"The Hydrophobic Effect", J. Chem. Edu. 66, 581 (1989).
[35] Kahlweit M., "Microemulsions", Science 240, 617 (1988).
[36] Rees G. D. and Robinson B.H.," Microemulsions and Organogels: Properties and Novel Applications", Adv. Mater. 5, 608 (1993).
[37] Kawasaki H., Yamamoto H., Fujimori H., Arakawa R., Iwasaki Y. and Inada M., “Stability of the DMF-Protected Au Nanoclusters: Photochemical, Dispersion, and Thermal Properties”, Langmuir, ASPS. DOI: 10.1021/la9038842
[38] Y. H. Su, W. H. Lai, S. -H. Chang, M. H. Hon, “Surfactants-aided Syntheses of Different Sizes and Triangular Shape of Gold Particles Using Trisodium Citrate in Environmentally Friendly and Photoinduced Methods”, J. Nanosci. Nanotechnol. 7, 3146 (2007).
[39] Jin R., Cao Y.W., Mirkin C.A., Kelly K. L., Schatz G.C., Zheng J. G., “Photoinduced Conversion of Silver Nanospheres to Nanoprisms”, Science 294, 1901 (2001).
[40] Su Y.H., Teoh L.G., Lai W.H., Chang S.-H., Yang H.-C., Hon M.-H., “Ellipsometric Advances for Local Surface Plasmon Resonance to Determine Chitosan Adsorption on Layer-by-layer Gold Nanoparticles”, Appl. Spectrasc. 61, 1007 (2007).
[41] Oh E., Susumu K., Goswami R. , Mattoussi H. ,”One-Phase Synthesis of Water-Soluble Gold Nanoparticles with Control over Size and Surface Functionalities”, Langmuir, ASPS.DOI: 10.1021/la904438s
[42] Ritchie, R. H., Eldridge, H. B., “Optical Emission from Irradiated Foils. I”, Phys. Rev. 126, 1947 (1962).
[43] A. Mooradian, “Photoluminescence of matels”, Phy. Rev. Lett. 22, 185 (1969).
[44] Wustholz, K. L., Bott, E. D., Isborn, C. M., Li, X., Kahr, B. & Reid, P. J., “Dispersive kinetics from single molecules oriented in single crystals of potassium acid phthalate”, J.Phys. Chem. C 111, 9146 (2007).
[45] Yeow, E. K. L., Melnikov, S. M., Bell, T. D. M., De Schryver, F. C., Hofkens, J., ”Characterizing the fluorescence intermittency of photobleaching kinetics of dye molecules immobilized on a glass surface”, J. Phys. Chem. A 110, 1726 (2006).
[46] Hoogenboom, J. P., van Dijk, E. M. H. P., Hernando, J., van Hulst, N. F. & Garcia-Parajo, M. F. “Power-law–distributed dark states are the main pathway for photobleaching of single organic molecules.”, Phys. Rev. Lett. 95, 097401 (2005).
[47] Hoogenboom, J. P., Hernando, J., van Dijk, E. M. H. P., van Hulst, N. F. & Garcia-Parajo, M. F. ,”Power-law blinking in the fluorescence of single organic molecules.”, ChemPhysChem 8, 823 (2007).
[48] Schuster, J., Cichos, F. & von Borczyskowski, C. ,“Blinking of single molecules in various environments”, Opt. Spect. 98, 778 (2005).
[49] Haase, M. “Exponential and power-law kinetics in single-molecule fluorescence intermittency”, J. Phys. Chem. B 108, 10445 (2004).
[50] Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E., “On/off blinking and switching behavior of single green fluorescent protein molecules”, Nature 388, 355 (1997).
[51] Vanden Bout, D. A., Yip, W. T., Hu, D., Fu, D. K. Swager, T. M, Barbara, P. F., “Discrete Intensity Jumps and Intramolecular Electronic Energy Transfer in the Spectroscopy of Single Conjugated Polymer Molecules”, Science 277, 1074 (1997).
[52] Nirmal, M., Dabbousi, O. B., Bawendi, M. G., Macklin, J. J., Trautman, J. K., Harris, T. D., Brus, L.E., “Fluorescence intermittency in single cadmium selenide nanocrystals”, Nature 383, 802 (1996).
[53] Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. “Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: A universal power law behavior”, J. Chem. Phys. 112, 3117-3120 (2000).
[54] Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. ,”On/Off’ fluorescence intermittency of single semiconductor quantum dots”, J. Chem. Phys. 115, 1028 (2001).
[55] Shimizu, K. T., ” Blinking statistics in single semiconductor nanocrystal quantum dots”, Phys. Rev. B 63, 205316 (2001).
[56] Pelton, M., Grier, D. G., Guyot-Sionnest, P., “Characterizing quantum-dot blinking using noise power spectra”, Appl. Phys. Lett. 85, 819 (2004).
[57] Pelton, M., Smith, G., Scherer, N. F. & Marcus, R. A., “Evidence for a diffusion controlled mechanism for fluorescence blinking of colloidal quantum dots”, Proc. Natl. Acad. Sci. 104, 14249 (2007).
[58] Zhang, K., Chang, H., Fu, A., Alivisatos, A. P., Yang, H., ”Continuous distribution of emission states from single CdSe/ZnS quantum dots.”, Nano Lett. 6, 843 (2006).
[59] Schlegel, G., Bohnenberger, J., Potapova, I., Mews, “A. Fluorescence decay time of single semiconductor nanocrystals” Phys. Rev. Lett. 88, 137401 (2002).
[60] Fisher, B. R., Eisler, H. J., Stott, N. E. , Bawendi, M.G., “Emission intensity dependence and single exponential behavior in single colloidal quantum dot fluorescence lifetimes” J. Phys. Chem. B 108, 143 (2004).
[61] Chung, I. , Bawendi, M.G., “Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots”, Phys. Rev. B 70, 165304 (2004).
[62] Neuhauser, R. G., Shimizu, K. T., Woo, W. K., Empedocles, S. A. , Bawendi, M. G., “Correlation between Fluorescence Intermittency and Spectral Diffusion in Single Semiconductor Quantum Dots” Phys. Rev. Lett. 85, 3301 (2000).
[63] Fomenko V. , Nesbitt, D. J., “Solution Control of Radiative and Nonradiative Lifetimes: A Novel Contribution to Quantum Dot Blinking Suppression”, Nano Lett. 8, 287 (2008).
[64] Stefani, F. D., Zhong, X., Knoll, W., Han, M. , Kreiter, M., “Memory in quantum-dot photoluminescence blinking”, New J. Phys. 7, 197 (2005).
[65] Stefani, F. D., Zhong, X., Knoll, W., Kreiter, M., Han, M., “Quantification of photoinduced and spontaneous quantum-dot luminescence blinking”, Phys. Rev. B 72, 125304 (2005).
[66] Hohng, S., Ha, T., “Near-complete suppression of quantum dot blinking in ambient conditions”, J. Am. Chem. Soc. 126, 1324 (2004).
[67] Hammer, N. I., Early, K. T., Sill, K., Odoi, M. Y., Emrick, T., Barnes, M. D., “Coverage-mediated suppression of blinking in solid state quantum dot conjugated organic composite nanostructures”, J. Phys. Chem. B 110, 14167 (2006).
[68] Fu, Y., Zhang, J., Lakowicz, J. R., “Suppressed blinking in single quantum dots (QDs) immobilized near silver island films (SIFs)”, Chem. Phys. Lett. 447, 96 (2007).
[69] Park, S. J., Link, S., Miller, W. L., Gesquiere, A., Barbara, P. F., “Effect of electric field on the photoluminescence intensity of single CdSe nanocrystals”, Chem. Phys. 341, 169 (2007).
[70] Wang, S., Querner, C., Emmons, T., Drndić, M., Crouch, C. H. “Fluorescence blinking statistics from CdSe core and core-shell nanorods”, J. Phys. Chem. B 110, 23221 (2006).
[71] Yuan, C.T., Chou, W.C., Tang, J., Lin, C.A., Chang, W.H., Shen, J.L., Chuu, D.S., “Single fluorescent gold nanoclusters“, Opt. Express 17, 16111 (2009).
[72] Mahler, B., Spinicelli, P., Buil, S., Quelin, X., Hermier, J.-P., Dubertret1, B., “Towards non-blinking colloidal quantum dots“, Nature Mater. 7, 659 (2008).
[73] Schick M.J., “Electrical Phenomena at Interfaces” Second Edition, Chapter 8 Electrophresis, Marcel Dekker, Inc, p. 152 - 223.
[74] Ware B.R., Haas D.D.,” in Fast Method in Physical Biochemistry and Cell Biology” (R.I. Sha'afi and S.M. Fernandez, Eds), Elsevier, New York, 1983, Chap. 8.
[75] Ware R., Flygare W.H., “Electrophoretic Light Scattering of Surfactant Micelle Colloids”, J. Colloid Interface Sci. 39, 670 (1972).
[76] Josefwiicz J. Hallett, F.R., “Spheres by Laser Cross-Beam Intensity Correlation”, Appl. Opt. 14, 740 (1975).
[77] Oka K., Otani W., Kameyama K., Kidai M., Takagi T., “Drop formation and detachment from rotating capillaries”, Appl. Theor. Electrophor 1, 273 (1990).
[78] Oka K., Otani W., Kubo Y., Zasu Y., Akagi M., U.S. Patent Appl. 465, 186 and Jpn. Patent H7-5227 (1995).
[79] Mori S., Okamoto H.,” Electrophoretic light scattering”, Flotation 28, 1 (1980).
[80] Smoluchowski M., “ Handbuch der Electrizitat und des Magnetismus“. (L. Greatz. Ed). Barth, Leripzig, 1921, pp. 379.
[81] J. N. Goodier, “The characteristic property of Saint-Venant's solutions for the problems of torsion and bending in elastic rods by a set of physically plausible assumptions”, Phil. Mag 23, 186 (1937).
[82] O. H. Griffin and M. A. Vidussoni, “Global/local finite element analysis of composite materials,” Intl. Conf. on computer aided design in composite material technology, Springer, Berlin, 1988.
[83] Skoog D. A., Holler F. J., and Stanley R. “Crouch, Principles of Instrumental Analysis”. 6th ed. Thomson Brooks/Cole. 169 (2007).
[84] Lu Y.W., Zhang H. F., Liu F. X., “UV-visible reflectance spectra of nanocrystalline silver compacted under different pressures “, Phys. Lett. A 341, 216 (2005).
[85] Thompkins H. G., “A User’s Guide to Ellipsometry”, Academic Press, New York, 1993.
[86] R. M. A. Azzam, N. M. Bashara, “Ellipsometry and Polarized Light” , North-Holland Personal Library, Oxford, 1989.
[87] Gottesfeld S., Kim Y.-T., Redondo A.,” Recent Applications of Ellipsometry and Spectroellipsometry in Electrochemical Systems. In Physical Electrochemistry. Principles, methods and applications”, Rubinstein, I., Ed. , Marcel Dekker, New York, 1995.
[88] Arwin H., “Ellipsometry on thin organic layers of biological interest: characterization and applications“, Thin Solid Films 377, 48 (2000).
[89] Forzani S.E, Otero M., Perez MA., Teijelo M. L., Calvo E. J., “The structure of layer-by-layer self-assembled glucose oxidase and Os(Bpy)2CIPyCH2NH-Poly(allylamine) multilayers: Ellipsometric and quartz crystal microbalance studies”, Langmuir 18, 4020 (2002).
[90] Moulder, J. F., ‘Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics, Inc., U.S.A., 1995.
[91] Hirsch P., Howie A., Nicholson R., Pashley D. W., Whelan M. J. “Electron microscopy of thin crystals” , Butterworths/Krieger, London/Malabar FL, 1965.
[92] Barber, P. W., Chang, R. K., Optical Effects Associated With Small Particles, World Scientific Publishing Co., Inc.: Singapore, New Jersey, Hong Kong, 1988.
[93] Kuno M., Fromm D.P., Hamann H.F., Gallagher A., Nesbitt, D. J.,” Nonexponential "blinking" kinetics of single CdSe quantum dots: A universal power law behavior”, J. Chem. Phys. 11, 3117 (2000).
[94] Ozaki, T., Kino, H., “Numerical atomic basis orbitals from H to Kr”, Phys. Rev. B 69, 195113 (2004) and http://www.openmx-square.org/.
[95] Wei, Z., Zamborini, F. P., “Directly monitoring the growth of gold nanoparticle seeds into gold nanorods“, Langmuir 20, 11301 (2004).
[96] Sherry, L. J., Chang, S.-H., Schatz, G.C., Duyne, R.P.V., Wiley, B.J., Xia, Y., “Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes”, Nano Lett. 5, 2034 (2005).
[97] Kreibig, U., Vollmer, M., “Optical Properties of Metal Clusters”, Springer-Verlag: Berlin and Heidelberg, 1995.
[98] Buffat, H., Borel, J.P., “Size Effect on the Melting Temperature of Gold Particles”, Phys. Rev. A 13, 2287 (1976).