簡易檢索 / 詳目顯示

研究生: 簡郡緯
Chien, Chun-Wei
論文名稱: 利用共軸雙焦距液晶透鏡提升擴增實境應用之景深效果研究
Study of viewing depth enhancement for augmented reality applications via a coaxial bifocal liquid crystal lens
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 81
中文關鍵詞: 圓孔型液晶透鏡共軸雙焦距擴增實境頭戴式顯示器多成像平面
外文關鍵詞: Liquid crystal lens, coaxial bi-focus, multi-focal plane, head mounted display, augmented reality
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   視覺輻輳調節衝突(Vergence–accommodation conflict, VAC)為擴增實境頭戴式顯示器(Augmented reality head mounted displays, ARHMDs)常見的問題,其主要歸因於頭戴式顯示器的影像資訊在固定的成像平面。本研究論文利用實驗室先前所研製的共軸雙焦距液晶透鏡,並結合線性偏振轉換的液晶元件操作於擴增實境的光路中,研究其景深調制的效果。
      研究先以液態透鏡操作於ARHMDs光路中,並操作其屈光度調制對應的成像平面位置量測與理論值計算比較其一致性。接著,改以共軸雙焦距液晶透鏡進行實驗研究,該液晶透鏡使用較低雙折射係數的液晶材料以降低色像差問題,並藉由施加兩個不同的電壓操作使液晶透鏡具有最小的波前誤差其數值約為0.25 λrms。最後,將最佳化的液晶透鏡應用於ARHMDs光路中,並以其雙焦距模式操作配合一電操控之90度扭轉角液晶盒,並以一屈光度對應一圖像,圖像切換與對應透鏡屈光度的同步,最終呈現輸入影像具有三成像平面的效果,其視覺認知感受到三個影像分別清楚存在於不同景深位置。
      更進一步使用本實驗室所製作之雙液晶層(Two LC layers, TLCL)液晶透鏡,先以電操控之90度扭轉角液晶盒施加電壓且其頻率與影像訊號同步達到雙成像平面條件,並配合另一組電控之90度扭轉角液晶盒應用於ARHMDs中,如此設計具備較廣可調動成像平面能力可達到影像調整位置由7公分至160公分處,以及藉由兩片90度扭轉角液晶盒之四種電壓開關組合,即可達到同一時間下具備四個不同深度的平面。

    Vergence-accommodation conflict is a common issue in augmented reality head mounted displays (ARHMDs) because of a usual fixed image plane. In this thesis, the proposed two LC layers (TLCL) lenses with coaxial bi-focus electrically driven with two independent voltages is used and demonstrated their capabilities in ARHMDs. The optimal TLCL lens shows the minimum wavefront aberration close to 0.25 λrms. Finally, the coaxial bi-focus TLCL lenses show operational concepts of multi-focal planes to achieve better performance in ARHMDs.

    摘要 I Abstract III 誌謝 XI 目錄 XII 表目錄 XV 圖目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 6 第二章 液晶簡介與透鏡原理 7 2.1 液晶 7 2.1.1 起源與分類 7 2.1.2 液晶之物理特性 9 2.1.3 液晶配向 12 2.2 圓孔型液晶透鏡 13 2.2.1 原理 13 2.2.2 液晶透鏡干涉條紋 14 2.2.3 液晶透鏡焦距 15 2.2.4 液晶透鏡之不連續線 16 2.2.5 光聚合物穩定法 17 2.3 90度扭轉角向列型液晶 18 第三章 實驗裝置與材料 19 3.1 實驗材料與設備 19 3.1.1 液晶材料 19 3.1.2 光聚合物 23 3.1.3 配向液 24 3.1.4 實驗材料與設備 24 3.2 液晶透鏡製作 26 3.3 實驗裝置與量測 31 3.3.1 干涉條紋量測 31 3.3.2 焦距量測 33 3.3.3 焦距理論值計算 34 3.3.4 ARHMDs系統 35 3.3.5 ARHMDs達成多成像平面方法 38 第四章 實驗結果與討論 42 4.1 液態透鏡應用於ARHMDs 42 4.2 液晶透鏡優化 44 4.2.1 共軸雙焦液晶透鏡優化 44 4.2.2 雙成像平面應用之透鏡優化 47 4.2.3 四成像平面應用之透鏡優化 51 4.3 共軸雙焦液晶透鏡 54 4.3.1 應用於ARHMDs之三成像平面 54 4.3.2 共軸雙焦液晶透鏡之改良 64 4.4 ARHMDs之雙成像平面 67 4.4.1 液晶透鏡之成像 67 4.4.2 應用於ARHMDs 68 4.5 ARHMDs之四成像平面 71 第五章 結論與未來展望 75 5.1 結論 75 5.2 未來展望 76 參考文獻 78

    [1] J. P. Rolland, M. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39, 3209–3215 (2000).
    [2] J. P. Rolland and H. Hua, “Head-mounted display systems,” in Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Taylor & Francis, 2003).
    [3] B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
    [4] Epson Moverio, https://moverio.epson.com/
    [5] Microsoft HoloLens, https://www.microsoft.com/en-us/hololens
    [6] D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 1–30 (2008).
    [7] S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
    [8] S. Liu, and H. Hua, “Time-multiplexed dual-focal plane head-mounted display with a liquid lens,” Opt. Lett. 34(11), 1642–1644 (2009).
    [9] H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
    [10] Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
    [11] K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127–130 (2014).
    [12] H. J. Yeom, H. J. Kim, S. B. Kim, H. Zhang, B. Li, Y. M. Ji, S. H. Kim, and J. H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
    [13] G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
    [14] J. Yeom, J. Jeong, C. Jang, G. Li, K. Hong, and B. Lee, “Three dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element,” Appl. Opt. 54, 8856-8862 (2015).
    [15] E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
    [16] J. S. Chen and D. P. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23(14), 18143–18155 (2015).
    [17] Z. Chen, X. Sang, Q. Liu, J. Li, X. Yu, X. Gao, B. Yan, K. Wang, C. Yu, and S. Xie, “A see-through holographic head-mounted display with the large viewing angle,” Opt. Commun. 384, 125–129 (2017).
    [18] Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
    [19] T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
    [20] M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
    [21] 李晟豪, “雙液晶層結構具有快速切換共軸雙焦距特性與較佳影像能
    力”, 國立成功大學光電科學與工程研究所碩士論文, 中華民國一百零六年七月.
    [22] C.-Y. Chien, C.-H. Li, and C.-R. Sheu, “An electrically tunable liquid crystal lens with coaxial bi-focus and single focus switching modes” Crystals. (7), 209 (2017).
    [23] 游琮宏, “控制混合矽烷鍍膜於玻璃表面產生可調變預傾角的液晶盒之
    研究”, 國立成功大學光電科學與工程研究所碩士論文,中華民國九十六年七月.
    [24] Bruce A. Averill and Patricia Eldredge “Chemistry: Principles, Patterns, and Applications”, 1st. Edition, Chap. 11.
    [25] I. C. Khoo, “Nonlinear optics, active plasmonic and tunable metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
    [26] Y. Y. Kao, P. C. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
    [27] C. Hilsum, “Flat-panel electronic displays: a triumph of physics, chemistry and engineering,” Philos. Trans. R. Soc. A 368(1914) (2010).
    [28] S. T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23, 3911–3915 (1984).
    [29] J. Li and S.T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95, 896–901 (2004).
    [30] M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted edge methodology,” Proc. SPIE 5251, 243–251 (2004).
    [31] N. Koren, “The Imatest program: Comparing cameras with different amounts of sharpening,” Proc. SPIE 6069, 60690L (2006).

    下載圖示 校內:2023-04-15公開
    校外:2023-04-15公開
    QR CODE