| 研究生: |
謝宏毅 Xie, Hung-Yi |
|---|---|
| 論文名稱: |
土壤應力-變位模式之建立與邊坡變位分析之應用 Modeling Stress-Displacement Relationships for Soils and Applications to Slope Displacement Calculations |
| 指導教授: |
黃景川
Huang, Ching-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 230 |
| 中文關鍵詞: | 切片法 、邊坡穩定分析 、滑動位移 、土壤雙曲線模型 |
| 外文關鍵詞: | Slice method, Slope stability analyses, Slide displacement, Hyperbolic soil model |
| 相關次數: | 點閱:103 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以Duncan and Chang (1970) 之雙曲線土壤強度理論作為求解邊坡滑動變位的土壤強度模型。本文蒐集11個不同尺寸與土樣種類之直接剪力試驗,根據雙曲線理論建立土壤剪應力-剪動位移之模型。以回歸分析求其雙曲線之應力-變位模型之控制參數K、n與Rf 。 回歸分析結果顯示 : 土壤初始勁度參數 (K) 在一般室內(小型)直剪試驗得到K之值約為640~1200,大型直剪之K值則介於50與870之間。K值受直剪盒尺寸之影響很大,直剪盒尺寸越小K值越大;而土壤初始勁度與圍壓之影響參數 (n) 較不受直剪盒尺寸與土壤種類的影響,其值大部分介於0.1與1.75之間;破壞比 (Rf) 亦不受直剪盒尺寸與土壤種類的影響,其值約介於0.7與0.9之間。低塑性黏土(CL)在大型直剪中的應力-變位參數(K=80~290, n=0.15~0.61,Rf =0.74~0.87)較接近Duncan-Chang (1980)的建議值(K=60~150, n=0.45, Rf =0.7)。
為了求解邊坡穩定之滑動變位問題,採用新電腦分析程式: SLICE DISP。此一電腦程式為Huang(2012)在Visual Basic Express (2010)平台撰寫而成之改良變位分析切片法,乃是以傳統二度空間(2-D) 之Janbu,Bishop及Fellenius切片分析法為基礎,導入位移相容性以及剪應力-剪動位移雙曲線模型,擴充成能計算滑動變位的邊坡穩定分析法。
收集兩個有實際監測變位紀錄的案例進行驗證分析,檢驗改良-切片法的可用性。分析結果顯示: 輸入適當的土壤凝聚力c、土壤摩擦角 、雙曲線模擬參數K、n、Rf等五個分析主控變數可有效計算邊坡在地下水位上升之影響下邊坡之滑動位移。本分析法對追蹤長期邊坡在地下水位影響下之滑動歷程亦有相當良好的結果。本方法之另一特點為可以求得沿滑動面之局部安全係數, 比以往之邊坡穩定分析中之單一安全係數更具實用之價值及在工程應用上之潛力。
To calculate the displacement of slopes induced by heavy rainfall, a hyperbolic shear stress vs. shear displacement model is developed here. This hyperbolic model is based on that proposed by Duncan and Chang (1970) which was for the shear vs. strain relationship of soils. A total of eleven test results including standard (small scale) and large-scale direct shear tests were studied. Results of curve-fitting showed that the initial stiffness parameter (K) are in the range of 640-1200 (from small-scale tests) or in the range of 50-870 (from large-scale test). Values of K can be significantly influenced by the size of direct shear boxs. Parametes, n (material constant for pressure-dependent initial stiffness) and Rf (failure ratio) are rather independent of the shear box sizes. It was found that material constants (K=80-290, n=0.15-0.61, Rf=0.74-0.87) obtained from large-scale tests on the low-plasticity clay (CL) are close the those (K=60~150, n=0.45, Rf =0.7) suggested by Duncan-Chang (1970).
To validate the hyperbolic model, three displacement-based slice methods are used to calculate the slope displacement of two well-monitored slopes. These displacement-based slice methods were extensions from the conventional Janbu’s, Bishop’s and Fellenius’ methods, and were formulated and coded by Huang (2012).
Results of preliminary analyses show good agreements between the calculated and the observed slope displacement induced by an elevated groundwater table during a heavy rainfall. Advantages of the proposed slice method with input parameters represented by a hyperbolic shear stress-shear displacement model were highlighted. However, more accurate analyses based on the results of on-site large-scale direct shear tests should be performed in the future to validate the proposed model for practical applications.
1. Abe, K., and Ziemer, R. R .(1991) “ Effect of tree roots on a shear zone: modeling reinforced shear stress” Can. J. For.Res. 21: 1012-1019.
2. Bishop, A. W. (1955) “The use of the slip circle in the stability analysis of slopes” Geotechnique, Vol. 5, pp. 7-17.
3. Clough, G. W. and Duncan, J. M. (1971) “Finite element analyses of retaining wall behavior” Journal of Soil Mechanics and Foundation Division, Proc. ASCE, Vol. 97, No. SM12, pp. 1657-1673.
4. Davoudi, M. H. (2011) “Influence of Willow Root Density on Shear Resistance Parameters in Fine Grain Soils using in situ Direct Shear Tests”, Research Journal of Environmental Sciences 5(2): 157-170,2011.
5. Duncan, J. M. and Chang, C.-Y. (1970) “Nonlinear analysis of stress and strain in soils” Journal of Soil Mechanics and Foundation Division, Proc. ASCE, Vol. 96, No. SM5, pp. 1629-1653.
6. Duncan, J. M., Byrne, P., Wong, K.S. and Mabry, P. (1980) “Strength, stress-strain and buck modulus parameters for finite element analyses of stresses and movements in soil masses” Report No. VCB/GT/80-01, Department of Civil Engineering, University of California at Berkeley, August, pp. 77.
7. Fellenius, W. (1936) “Calculation of the stability of earth dams” Proceedings of 2nd Congress on Large Dams, Vol. 4, pp. 445-463.
8. Fredlund, D. G. and Krahn, J. (1977) “Comparison of slope stability methods of analysis” Canadian Geotechnical Journal, Vol. 25, pp. 238-249.
9. Janbu, N. (1973) “Slope stability computations, Embankment-Dam Engineering” Casagrande Volume, John Wiley & Sons, pp. 47-86.
10. Lin, R. S. (1987) “Direct determination of bulk modulus of partially saturated soils” M.S. thesis, University of Massachusetts.
11. Morgenstern, N. R., and Price, V. E. (1965) “The analysis of the stability of general slip surfaces” Geotechnique, Vol. 15, pp. 9-93.
12. Operstein, V. and S. Frydman, 2000, “The influence of vegetation on soil strength”, Ground Improvement, vol. 4, no. 2, pp.81-89.
13. Qiu Jin-Ying, Fumio Tatsuoka and Taro Uchimura (2000) “Constant Pressure and Constant Voume Direct Shear Tests on Reinforced Sand”, Soils and Foundations Vol. 40, No.4, 1-17, Aug. 2000 Japanese Geotechnical society.
14. Sarma, S. K. (1973) “Stability analysis of embankments and slopes” Geotechnique, Vol. 23, No. 3, pp. 423-433.
15. Spencer, E. (1973) “Thrust line criterion in embankment stability analysis” Geotechnique, Vol. 23, No. 1, pp. 85-100.
16. Waldron, L. J., (1977) “The shear resistance of root-permeated homogeneous and stratified soil”, Soil Science Society of America Journal, vol. 41, no. 5, pp.843-849.
17. Whitman, R. V. and Bailey, W. A. (1967) “Use of computers for slope stability analysis” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 93, No. SM4, pp. 475-497.
18. 台灣省交通處公路局第五區工程處、財團法人工業技術研究院能源與資源研究所(1999) “嘉義縣五彎仔崩塌地地質探查報告”。
19. 李德河、林宏明、楊沂恩、謝松林 (2003) “南部軟岩邊坡工程力學之探討”,泥岩自然生態工法研討會,2003年11月7日,台南。
20. 林澤仁 (2005) “摻土水泥排樁擋土壁中攪拌樁強度與開挖變形之關係” ,國立台灣科技大學營建工程系碩士學位論文。
21. 徐薇 (2009) “以三維個別元素法模擬卵礫石層的物理特性”,朝陽科技大學營建工程系碩士論文。
22. 陳志昌、葛德治、溫國樑 (2001) “FLAC 程式應用於土壤邊坡穩定分析”, 國立中央大學應用地質研究所。
23. 陳煜文 (2008) “不同中型喬木植物(烏臼、木麻黃、銀合歡)根系型態對土壤剪力抵抗增量之影響”, 國立高雄第一科技大學營建工程系碩士論文。
24. 黃景川 (1999) ,「土壤力學」,三民書局。
25. 經濟部中央地質調查所、財團法人中興工程顧問社(2011) “南勢坑調查範圍現地調查評估結果”,易淹水地區上游集水區地質調查及資料庫建置-集水區水文地質對坡地穩定性影響之調查評估計畫(1/3)(第3期100年度)。
26. 褚炳麟等 (1989) “台地礫石堆積層與頭嵙山礫岩層之現地直接剪力試驗研究”,第三屆大地工程學術研討會,第695-706頁。
27. 蔡宗成 (2006) “台19線五彎仔地滑研究”, 國立成功大學土木工程研究所碩士論文。
28. 鍾明劍、譚志豪、陳勉銘、蘇泰維 (2011) “以定率法評估特定邊坡山崩臨界雨量”,2011年中華水土保持學會年會及學術研討會論文集。