| 研究生: |
林朝陽 Lin, Chao-Yang |
|---|---|
| 論文名稱: |
奈米級無鉛銲錫合金製備及反應機制研究 Synthesis of Nanosized Lead-Free Solder Particles and Its Reaction Mechanism |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 化學還原法 、無鉛銲錫 、錫-銀-鋅 |
| 外文關鍵詞: | Chemical reduction method, lead-free solder alloy, Sn-Ag-Zn |
| 相關次數: | 點閱:90 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自1960年以來,電子工業開始快速地成長,IC的製造技術變得愈來愈複雜,晶片與電子元件間接合封裝的技術在環保的考量下也面臨了很大的挑戰。傳統的銲錫合金主要為含鉛的錫-鉛二元合金,其具有良好的機械性質和抗腐蝕等優點,能增進銲錫的強度及可靠度。自從歐盟開始實施WEEE與RoHS指令後,由於鉛也是對人體及環境有害的物質之一,而開始被限制或禁止使用,因此開發無鉛銲錫來替代傳統的錫-鉛合金是刻不容緩的。
本研究分別採用了化學還原法(Chemical reduction method)及高溫/低溫化學還原法(High/Low temperature chemical reduction method)來進行Sn-3.5Ag、Sn-3.5Ag-0.5Zn無鉛銲錫合金的製備。在常壓下,使用硫酸錫、硝酸銀及硝酸鋅等鹽類為前驅物,NaBH4當作還原劑,並在反應過程中添加PVP作為保護劑,於反應完成後得到Sn-3.5Ag、Sn-3.5Ag-0.5Zn的奈米合金粉末。結果顯示,高溫化學還原法(50℃)能得到更分散且粒徑分佈在10-20nm間的奈米合金粉末。
樣品藉由XRD進行結構鑑定,並在掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)下進行表面形貌觀測及Ag3Sn繞射圖譜分析,並使用能量分散光譜儀(EDS)進行元素的定性及半定量分析,以此證明成功製備出錫-銀-鋅奈米合金,並推論其反應機制。此外,將反應過程中所產生的氣體收集後,進行GC的分析,證明在反應的過程中有氫氣的生成,對於化學還原反應式的推測提供了間接的佐證。
The electronics industry has grown rapidly since 1960s. The corresponding process technology for integrated circuits (IC) has also become more complicated. The challenge faced is the technology of IC devices packaging, with regards to the electrical connectivity and environmental protection. Traditionally, the lead-containing alloy, e.g. tin-lead is used as the solder joint extensively in the assembly of microelectronic packages. The special properties of lead-contained solders, e.g. rheology, mechanical, anti-corrosive etc. help to improve the strength and hence the reliability of the solder joints. However, lead and lead-containing compounds are harmful to the environment due to their toxicity. The Waste Electrical and Electronic Equipment (WEEE) and Restriction of Hazardous Substances (RoHS) banned the lead-containing solders in July 2006 in EU countries. Environmental Protection Agency of the US has cited lead as one of the top 17 harmful chemicals. Therefore, alternatives to replace the lead-containing alloy are urgently needed.
In this study, Sn-3.5Ag and Sn-3.5Ag-0.5Zn alloy nanoparticles were synthesized by chemical reduction method and high temperature chemical reduction method. In the chemical reduction method, the precipitation was carried out by using NaBH4 as a reducing agent and poly-m-vinyl-2-pyrrolidone (PVP) as a stabilizer. Results from the high temperature chemical reduction method revealed that the isolated particles were spherical in shape and the particle size varied from 10 to 20 nm. The nanoparticles obtained were evenly dispersed and less aggregated for the stirring time of 12 hrs and temperature of 50℃.
The microstructure of the nanoparticles were determined by using techniques such as X-ray diffraction, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), etc. X-ray diffraction patterns revealed that Ag3Sn was formed due to the successful alloying process. The composition of the alloy was also measured by an energy dispersive spectroscopy (EDS), both qualitatively and quantitatively. The nano-scaled Sn–3.5Ag solder was prepared successfully by these methods. By analyzing the composition of the gas that was collected during chemical reactions, hydrogen was found from GC analysis result. Combine with the FTIR result, reaction mechanism was proposed and indirectly validated.
Akbarzadeh, A., Zare, D., Farhangi, A., Mehrabi, M. R., Norouzian, D., Tangestaninejad, S., Moghadam, M. and Bararpour, N., "Synthesis and characterization of gold nanoparticles by tryptophane", American Journal of Applied Sciences, vol. 6, pp. 691-695, 2009.
Alberty, R. A. and Silbey, R. J., "Physical Chemistry", John Wiley and Son’s, 227, 1996.
Amsei Jr., N. L., Simõesa, A. Z., Piannoa, R. F. C., Zanettib S. M., Longoa, E. and Varelaa, J. A., "Structural and electrical properties of SrBi2(Ta0.5Nb0.5)2O9 thin films", Journal of Alloys and Compounds, 457, pp. 549-554, 2008.
Aslam, M., Chaki, N. K., Mulla, I. S. and Vijayamohanan, K., "Preparation and electrical characterisation of dodecanethiol monolayer protected silver nanoclusters", Applied Surface Science, 182, pp. 338-344, 2001.
Bai, L., Wan, H. and Street, S. C., "Preparation of ultrafine FePt nanoparticles by chemical reduction in PAMAM-OH template", Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 349, pp. 23-28, 2009.
Bakoglu, H. B., "Circuits, interconnections and packaging for VLSI, Chapter 2", Addison-Wesley, 1990.
Bek, R. Y. and Rogozhnikov, N. A., "Kinetics of electrochemical processes in the system: silver:cyanide solutions", Journal of Electroanalytical Chemistry, 447, pp. 109–115, 1998.
Capek, I., "Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions", Advances in Colloid and Interface Science, 110, pp. 49–74, 2004.
Chada, S., Fournelle, R.A., Laub, W. and Shanguan, D., "An improved numerical method for predicting intermetallic layer thickness developed during the formation of solder joints on Cu substrates", Journal of Electronic Materials, 28, pp. 1194-1202, 1999.
Chen, D. H. and Chen, Y. Y., "Synthesis of strontium ferrite nanoparticles by coprecipitation in the presence of polyacrylic acid", Materials Research Bulletin, vol. 37, pp. 801-810, 2002.
Chen, Y., Liew, K. Y. and Li, J., "Size-controlled synthesis of Ru nanoparticles by ethylene glycol reduction", Materials Letters, vol. 62, pp. 1018-1021, 2008.
Choi, W. K. and Lee, H. M., " Effect of Ni layer thickness and soldering time on intermetallic compound formation at the interface between molten Sn-3.5Ag and Ni/Cu substrate", Journal of Electronic Materials, 28, pp. 1251-1255,1999.
Chou, K. S. and Lai, Y. S., "Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids", Materials Chemistry and Physics, vol. 83, pp. 82-88, 2004.
Chou, K. S. and Ren, C. Y., "Synthesis of nanosized silver particles by chemical reduction method", Materials Chemistry and Physics, vol. 64, pp. 241-246, 2000.
Corrias, A., Ennas, G., Licheri, G., Marongiu, G. and Paschina, G., "Amorphous metallic powders prepared by chemical reduction of metal ions with potassium borohydride in aqueous solution", Chemistry of Materials, 2, pp. 363-366, 1990.
Dong, S. A. and Zhou, S. P., "Photochemical synthesis of colloidal gold nanoparticles", Materials Science and Engineering B, 140, pp. 153-159, 2007.
Du, X., Inokuchi, M. and Toshima, N., "Preparation and characterization of Co–Pt bimetallic magnetic nanoparticles", Journal of Magnetism and Magnetic Materials, vol. 299, pp. 21-28, 2006.
Edelstein, A. S. and Cammarata, R. C., "Nanomaterials", Institute of Physcis Publishing, 1996.
Elkins, K. E., Chaubey, G. S., Nandwana, V. and Liu, J. P., "A novel approach to synthesis of FePt magnetic nanoparticles", Journal of Nano Reserach, vol. 1, pp. 23-29, 2008.
Feynman R. P., "There’s plenty of room at the bottom", American Physical Society, 1959.
Goia, C., Matijevic´, E. and Goia, D. V., "Preparation of colloidal bismuth particles in polyols", Journal of Materials Research, 20, pp. 1507-1514, 2005.
Goia, D. V., " Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions", Journal of Materials Chemistry, 14, pp.451-458, 2004.
Goia, D. V. and Matijevic´, E., "Preparation of monodispersed metal particles", New Journal of Chemistry, pp. 1203-1215, 1998.
Hayashi, C., "Physcis Today", 1987.
Hsiao, L. Y. and Duh J. G., "Synthesis and characterization of lead-free solders with Sn-3.5Ag-xCu (x = 0.2, 0.5, 1.0) alloy nanoparticles by the chemical reduction method", Journal of The Electrochemical Society, vol. 152, pp. 105-109, 2005.
Hsiao, L. Y. and Duh, J. G., "Revealing the nucleation and growth mechanism of a novel solder developed from Sn-3.5Ag-0.5Cu nanoparticles by a chemical reduction method", Journal of Electronic Materials, 35, pp. 1755-1760, 2006.
Hsu, S. L. and Wu, R. T., "Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects", Materials Letters, vol. 61, pp. 3719-3722, 2007.
Huang, C. Y., Chiang, H. J., Huang, J. C. and. Sheen, S. R., " Synthesis of nanocrystalline Ag-Pd alloys by chemical reduction method", Nanostructured Materials, 10, pp. 1393–1400, 1998.
Huang, T. C., Wei, M. C., and Chen, H. I., "Preparation of hydrogen-permselective palladium-silver alloy composite membranes by electroless co-deposition", Separation and Purification Technology, vol. 32, pp. 239-245, 2003.
Ichinose, N., Ozaki, Y. and Kashu, S., "Superfine Particle Technology", Springer-Verlag London Limited, 1992.
Ingelsten, H. H., Bagwe, R., Palmqvist, A., Skoglundh, M., Svanberg, C., Holmberg, K., and Shah, D. O., "Kinetics of the formation of nano-sized platinum particles in water-in-oil microemulsions", Journal of Colloid and Interface Science, 241, pp. 104–111, 2001.
Jang, G. Y., Duh, J. G., Takahashi, H., Lu, S. W., and Chen, J. C., "The influence of Cu content on compound formation near chip side for the flip chip Sn-3.0Ag-(0.5 or 1.5)Cu solder bump during aging", Journal of Electronic Materials, vol. 35, pp. 2061-2070, 2006.
Jia, T., He, T., Li, P., Mo, Y. and Cui, Y., "A study of the thermal-induced nonlinearity of Au and Ag colloids prepared by the chemical reaction method", Optics & Laser Technology, vol. 40, pp. 936-940, 2008.
Jin, S and McCormack, M. C., US Patent 420,557,420/562 (June 9, 1998).
Jitianu, M., Kleisinger, R., Lopez, M. and Goia, D. V., "Preparation of carbon supported alloy PtCo nanoparticles for PEM fuel cells", Journal of New Materials for Electrochemical Systems, 10, pp. 489-495, 2005.
Kan, C., Wang, C., Zhu, J. and Li, H., "Formation of gold and silver nanostructures within polyvinylpyrollidone (PVP) gel", Journal of Solid State Chemistry, 183, pp.858–865, 2010.
Kanemaru, M., Shiraishi, Y., Koga, Y. and Toshima, N., "Calorimetric study on self-assembling of two kinds of monometallic nanoparticles in solution", Journal of Thermal Analysis and Calorimetry, 81, pp. 523-527, 2005.
Kao, S. T. and Duh, J. G., "Effect of Cu concentration on morphology of Sn-Ag-Cu solders by mechanical alloying", Journal of Electronic Materials, 33, pp. 1445-1451, 2004.
Keeler, R., "Specialty solders outshine tin/lead in problem areas", EP&P, 45, pp. 45-47, 1987.
Keskinenl, J., Ruuskanen1, P., Karttunen, M., Hannula, S. P., "Synthesis of silver powder using a mechanochemical process", Applied Organometallic Chemistry, 15, pp. 393-395, 2001.
Kim, K. D., Han, D. N. and Kim, H. T., "Optimization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver particles by chemical reduction method", Chemical Engineering Journal, vol. 104, pp. 55-61, 2004.
Kim, K. D., Lee, T. J. and Kim, H. T., "Optimal conditions for synthesis of TiO2 nanoparticles in semi-batch reactor", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 224, pp. 1-9, 2003.
Lai, H. L. and Duh, J. G., "Lead-Free Sn-Ag and Sn-Ag-Bi solder powders prepared by mechanical alloying", Journal of Electronic Materials, 32, pp. 215-220, 2003.
Lee, J. M., Kim, J. H., Lee, J. W., Kim, J. H, Lee, H. S., Chang, Y. S., Nurmi, J. T. and Tratnyek, P. G., "Synthesis of Fe-nano particles obtained by borohydride reduction with solvent", Proceedings of the Sixth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 2008.
Li, J., Fan, H. Q., Chen, J. and Liu, L. J., "Synthesis and characterization of poly(vinyl pyrrolidone)-capped bismuth nanospheres", Colloids and Surfaces a-Physicochemical and Engineering Aspects, 340, pp. 66-69, 2009.
Li, Y., Zhang, S., Sritharan, T., Liu, Y. and Chen T. P., "Influence of oxygen partial pressure on magnetron sputtered Sr0.8Nd0.3Bi2.5Ta2O9+x ferroelectric thin films", Journal of Alloys and Compounds, 457, pp. 549-554, 2008.
Mallory, G. O., Hajdu, J. B., "Electroless Plating: Foundamentals and Applications", Am. Electroplaters and Surf. Finishers Soc. Orlando, FL, USA, 1990.
Matijevic´, E. and Goia, D. V., "Formation mechanisms of uniform colloid particles", Croatica Chemica ACTA, 80, pp. 485-491, 2007.
Melton, C., "How good are lead free solders", SMT, pp. 32-36. 1995.
Mohanty, U. S., "Electrodeposition:a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals", Journal of Applied Electrochemistry, 41, pp. 257-270, 2011.
Mohanty, U. S. and Lin, K. L., "Electrochemical corrosion study of Sn-XAg-0.5Cu alloys in 3.5%NaCl solution", Journal of Materials Research Society, 22, pp. 2573-2781, 2007.
Moore G. E., "Cramming more components onto integrated circuits", Electronics, 38, pp. 4-7, 1965.
Mullin, J. W., "Crystallization", Butterworth-Heinemann, 1993.
Nayak, B. B., Vitta, S., Nigam, A. K. and Bahadur, D., "Ni and Ni–nickel oxide nanoparticles with different shapes and a core–shell structure", Thin Solid Films, vol. 505, pp. 109-112, 2006.
Podesta, M. D., "Understanding the properties of matter", Avenel, NJ, U.S.A, 2002.
Porbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, Oxford, University Press, New York, 1974.
Privman, V., "Diffusional nucleation of nanocrystals and their self-assembly into uniform colloids", Journal of Optoelectronics and Advanced Materials, 10, pp. 2827-2839, 2008.
Robb, D. T., Halaciuga, I., Privman, V., and Goia, D. V., "Computational model for the formation of uniform silver spheres by aggregation of nanosize precursors", Journal of Chemical Physics, 129, pp. 184705, 2008.
Rodriguez-Sanchez, L., Blanco, M. C. and Lopez-Quintela, M. A., "Electrochemical synthesis of silver nanoparticles", Journal of Physcial Chemistry B, 104, pp. 9683–9688, 2000.
Ross, P. J. and Taguchi, G., "Techniques for Quality Engineering", McGraw-Hill, New York, 1988.
Roy, R., "A Primer on the Taguchi Method", Van Nostrand Reinhold, New York, 1990.
Seelig, K., Circuit Assembly, 46, October, 1995.
Sevonkaev, I., Goia, D. V., Matijevic´, E., "Formation and structure of cubic particles of sodium magnesium fluoride", Journal of Colloid and Interface Science, 317, pp. 130-136, 2008.
Song, J. M., Liu, P. C., Shih, C. L. and Lin, K. L., "Role of Ag in the formation of interfacial intermetallic phases in Sn-Zn soldering", Journal of Electronic Materials, vol. 34, pp. 1249-1254, 2005.
Suber, L., Sondi, I., Matijevi c´, E. and Goia, D. V., "Preparation and the mechanisms of formation of silver particles of different morphologies in homogeneous solutions", Journal of Colloid and Interface Science, 288, pp. 489-495, 2005.
Taguchi, G., "Introduction to Quality Engineering", Asian Productivity Organization, Tokyo, 1990.
Toennies, J. P., "Optical properties of metal clusters", Springer-Verlag, 1995.
Tummala, R. R. and Madisetti, V. K., "System on chip or system on package?", IEEE Design and Test of Computers, 16, pp. 48-56, 1999.
Wang, H., Qiao, X., Chen, J. and Ding, S., "Preparation of silver nanoparticles by chemical reduction method", Colloids And Surfaces A: Physicochemical And Engineering Aspects, 256, pp. 111-115, 2005.
Wilson, M., Kannangara, K., Smith, G., Simmons, M. and Raguse, B., "Nanotechnology:Basic Science and Emerging Technologies", Princeton, 2004.
Yen, Y. W. and Chen, S. W., "Phase equilibria of the Ag-Sn-Cu ternary system", Journal of Materials Research, vol. 19, pp. 2298-2305, 2004.
Young, B. L., Duh, J. G. and Chion, B. S., "Wettability of electroless Ni in the under bump metallurgy with lead free solder," Journal of Electronic Materials, 30, pp. 543-553, 2001.
Zeng, D. and Hampden-Smith, M. J., "Synthesis and characterization of nanophase Group 6 metal (M) and metal carbide (M2C) powders by chemical reduction methods", Chemistry of Materials, 5, pp. 681-689, 1993.
Zettlemiyer, A. C., "Nucleation", Marcel Dekker, 1969.
Zhang, G., Huang, K., Liu, S., Zhang, W. and Gong, B., "Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders", Journal of Alloys and Compounds, vol. 426, pp. 432-437, 2006.
Zhang, Q. L., YANG, Z. M., DING, B. J., Lan, X. Z. and Kuo, Y. J., "Preparation of copper nanoparticles by chemical reduction method using potassium borohydride", Transactions of Nonferrous Metals Society of China, vol. 20, pp. 240-244, 2010.
Zhang, Z., Zhao, B. and Hu, L., "PVP Protective mechanism of ultrafine silver powder synthesized by chemical reduction processes", Journal of Solid State Chemistry, 121, pp. 105-110, 1996.
Zhao, Y., Zhang, Z. and Dang, H., "Preparation of tin nanoparticles by solution dispersion," Materials Science and Engineering A, 359, pp. 405-407, 2003.
Zhu, J. J., Liao, X. H., Zhao, X. N., Chen, H. Y., "Preparation of silver nanorods by electrochemical methods", Materials Letters, 49, pp. 91–95, 2001.
Zou, C. D., Gao, Y. L., Yang, B. and Zhai, Q. J., "Size-dependent melting properties of Sn nanoparticles by chemical reduction synthesis", Transactions of Nonferrous Metals Society of China, vol. 20, pp. 248-253, 2010.
王鉦源, "以化學還原法製備奈米級銀鈀微粉", 國立成功大學化學工程系碩士論文, 2002年06月.
林育右, "以化學還原法合成導電性銅奈米微粉之研究", 國立成功大學化學工程系碩士論文, 2003年06月.
邱信凱, "鎳金合金奈米粒子之製備與特性研究," 國立成功大學化學工程系碩士論文, 2005年06月.
蔡淑惠, "合金奈米粒子的製備與應用", 國立成功大學化學工程系碩士論文, 2003.
潘修任, "利用化學還原法製備奈米級無鉛銲錫材料研究", 國立成功大學工程科學系碩士論文, 2010.