| 研究生: |
陳怡蓁 Chen, Yi-Chen |
|---|---|
| 論文名稱: |
發展一個應用於自由運動大鼠的無線光基因刺激與量測系統 Development of Wirelessly Optogenetic Stimulation and Recording Platform for Freely Moving Rat |
| 指導教授: |
陳家進
Chen, Jia-Jin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 光基因刺激 、腦刺激 、無線電生理 |
| 外文關鍵詞: | optogenetics, brain stimulation, wireless neural recording |
| 相關次數: | 點閱:101 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光基因刺激法是一新興的神經科學研究技術,藉由光照射來控制基因改造的神經元。將光敏感性通道視紫蛋白表現於神經細胞膜上,再以特定波長的光線照射,便可活化通道視紫蛋白造成帶電離子的運輸,改變細胞膜電位進而調控神經細胞的電生理活性。藉由搭配組織特異性的遺傳工程技術,可以將通道視紫蛋白表現於特定的腦區、神經細胞種類,或是細胞的局部區域中,達成細胞選擇性與特異性的活化或是抑制。光基因刺激法已經有效地被應用於離體細胞模式或是活體動物模式中,產生空間上局部的、時間上精準的神經活性操控,以研究特定的神經迴路功能,或是探討各種神經疾病治病機轉。傳統的活體光基因刺激實驗,是使用光纖將來自於雷射或是發光二極體的光線,導入神經組織中進行光基因刺激。然而,光纖的連接限制了實驗動物的行為與運動型態,對於清醒動物模式的神經行為學研究有諸多不便。因此,研究者發展了許多可植入式的無線光基因刺激系統,以滿足這方面的實驗需求。然而,許多無線光基因刺激系統體積龐大、造價昂貴,還無法整合無線電生理量測。為了探討清醒自由運動的動物模式,其腦皮質電生理的活性受到光基因刺激的影響,在本研究中,我們開發一套利用紅外線傳輸的無線光基因系統,來自LabVIEW使用者介面的刺激紅外線訊號,經由紅外線感測與放大電路接收後,驅動植入式光電極內的微小發光二極體。刺激光源藉由光纖導入深層組織中,所引發的神經組織電位反應,則由包覆於光纖外的不鏽鋼管收集量測,最後神經電生理訊號藉由整合的無線射頻傳輸模組,同步記錄於LabVIEW程式中。本系統造價低廉,光電極模組與控制電路分開,控制電路只有在進行實驗時才需要裝設在動物的頭部,不僅可以縮小植入體積與節省製造成本,還可以降低植入物對動物日常生活的干擾,更有利於長期的動物實驗。紅外線傳輸原理簡單,體積小兼省電,紅外線放大電路作用於飽和區間,可以達成快速同步且穩定的高頻光基因刺激。本系統可以幫助神經科學家,採用光基因刺激法在清醒活動的小動物模式中,探究各種神經迴路機制與神經疾病治病機轉,如帕金森氏症。
Optogenetics is an emerging neuro-engineering technique that using light to control cellular function in genetic modified neurons. Optogenetics takes advantage of opsins found in retinal photoreceptor cells, which can be activated by light at specific wavelengths. By molecule-specific expression of opsins and light stimulation pulses, optogenetics allows investigator to activate or inhibit specific neurons with spatiotemporal precision. These features make optogenetics an ideal tool to investigate neural network underlying motor dysfunction in animal models of neural disorders. Although optical stimulation promises new exciting possibilities for neuroscience research, there is still an unmet need for reliable and implantable devices to precisely deliver light to the targeted neural pathways and to simultaneously record the electrical signals from the individual pathways. In conventional in vivo optogenetic study, the light from laser or photo-diode will be coupled into optical fiber then stimulate the specific neuron. However, the tethered optical fiber will restrict the animals’ behavior, which cause many limitations in awake and freely moving animals. Therefore, many implantable wireless optogenetic systems were proposed to solve the problems. However, many implantable wireless optogenetic systems are huge, high-cost and without wireless electrophysiological signals recording. In this study, we have developed a wireless optogenetic neural interface with one channel of optical stimulation and up to five channels of neural recording for freely moving animal experiments. The wireless optical stimulation was achieved by Infrared (IR) remote control. When the highly sensitive IR receiver was triggered, micro blue LED mounted on the rat’s head can be activated to emit blue light. The blue light was guided into brain tissue through a short segment of optical fiber, which was enclosed with a stainless steel cannula. The stainless steel cannula also functions as neural electrode to pick up neural response evoked by optogenetic stimulation. The recorded neural signals are amplified and transmitted through a commercially available radio-frequency (RF) head-stage. This simple designed neural interface is separated from IR-receiver head-stage, which minimizes the size of the implant and causes less interference to freely moving rats. The electrophysiology, which is filtered and amplified, was recorded from 4-weeks ChR2-expressed rats. The recording of neural readouts: local field potentials (LFPs) and multi-unit activities (MUAs), can be synchronized with optical stimulation and behavioral events, which provide benefits in studies of awake and freely moving animal models. Photoelectric artifacts less than 4 ms of pulse width was confined during LFPs recording induced by optical stimuli. The artifact can be easily distinguished with LFPs by lengths of latency. The implantable wireless device allows highly precise optogenetic controlling of specific neuronal populations in freely moving animal models. The designed experiments allow clearer elucidation of the mechanisms of motor control in neural system. These features of wireless optogeentic stimulation and recording system will be very helpful in the understanding of brain functions and for the study of neural disorder with motor dysfunction such as Parkinson’s disease.
Ameli, R., Mirbozorgi, A., Neron, J.-L., Lechasseur, Y., & Gosselin, B. A wireless and batteryless neural headstage with optical stimulation and electrophysiological recording. Conf Proc IEEE Eng Med Biol Soc 2013, 5662-5665. 2013.
Anikeeva, P., Andalman, A. S., Witten, I., Warden, M., Goshen, I., Grosenick, L., Gunaydin, L. A., Frank, L. M., & Deisseroth, K. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nature Neuroscience 15(1), 163-170. 2012.
Arfin, S. K., Long, M. A., Fee, M. S., & Sarpeshkar, R. Wireless neural stimulation in freely behaving small animals. Journal of Neurophysiology 102(1), 598-605. 2009.
Aston-Jones, G., & Deisseroth, K. Recent advances in optogenetics and pharmacogenetics. Brain Res 1511, 1-5. 2013.
Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience 8(9), 1263-1268. 2005.
Cao, H., Gu, L., Mohanty, S., & Chiao, J.-C. An integrated μLED optrode for optogenetic stimulation and electrical recording. IEEE Transactions on Biomedical Engineering 60(1), 225-229. 2013.
Caraceni, T., & Musicco, M. Levodopa or dopamine agonists, or deprenyl as initial treatment for Parkinson's disease. A randomized multicenter study. Parkinsonism & related disorders 7(2), 107-114. 2001.
Carter, M. E., & de Lecea, L. Optogenetic investigation of neural circuits in vivo. Trends in Molecular Medicine 17(4), 197-206. 2011.
de Lau, L. M., & Breteler, M. M. Epidemiology of Parkinson's disease. The Lancet Neurology 5(6), 525-535. 2006.
Fan, D., Rich, D., Holtzman, T., Ruther, P., Dalley, J. W., Lopez, A., Rossi, M. A., Barter, J. W., Salas-Meza, D., & Herwik, S. A wireless multi-channel recording system for freely behaving mice and rats. PLoS ONE. 2011.
Fan, D., Rich, D., Holtzman, T., Ruther, P., Dalley, J. W., Lopez, A., Rossi, M. A., Barter, J. W., Salas-Meza, D., Herwik, S., Holzhammer, T., Morizio, J., & Yin, H. H. A Wireless Multi-Channel Recording System for Freely Behaving Mice and Rats. PLoS ONE. 2011.
Fregni, F., Boggio, P. S., Santos, M. C., Lima, M., Vieira, A. L., Rigonatti, S. P., Silva, M. T. A., Barbosa, E. R., Nitsche, M. A., & Pascual‐Leone, A. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease. Movement Disorders 21(10), 1693-1702. 2006.
Fregni, F., & Pascual-Leone, A. Technology insight: noninvasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDCS. Nature Clinical Practice Neurology 3(7), 383-393. 2007.
Gagnon-Turcotte, G., Kisomi, A. A., Ameli, R., Camaro, C.-O. D., LeChasseur, Y., Néron, J.-L., Bareil, P. B., Fortier, P., Bories, C., & De Koninck, Y. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability. Sensors 15(9), 22776-22797. 2015.
Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324(5925), 354-359. 2009a.
Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324(5925), 354-359. 2009b.
Hashimoto, M., Hata, A., Miyata, T., & Hirase, H. Programmable wireless light-emitting diode stimulator for chronic stimulation of optogenetic molecules in freely moving mice. Neurophotonics 1(1), 011002-011002. 2014.
Hsieh, T.-H., Huang, Y.-Z., Chen, J.-J. J., Rotenberg, A., Chiang, Y.-H., Chien, W.-S. C., Chang, V., Wang, J.-Y., & Peng, C.-W. Novel use of theta burst cortical electrical stimulation for modulating motor plasticity in rats. Journal of Medical and Biological Engineering 35(1), 62-68. 2015.
Huang, Y.-Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J. C. Theta burst stimulation of the human motor cortex. Neuron 45(2), 201-206. 2005.
Hunter, P. Shining a light on optogenetics. EMBO Reports. 2016.
Iwai, Y., Honda, S., Ozeki, H., Hashimoto, M., & Hirase, H. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neuroscience Research 70(1), 124-127. 2011.
Kim, T.-i., McCall, J. G., Jung, Y. H., Huang, X., Siuda, E. R., Li, Y., Song, J., Song, Y. M., Pao, H. A., & Kim, R.-H. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340(6129), 211-216. 2013.
Kim, T.-i., McCall, J. G., Jung, Y. H., Huang, X., Siuda, E. R., Li, Y., Song, J., Song, Y. M., Pao, H. A., Kim, R.-H., Lu, C., Lee, S. D., Song, I.-S., Shin, G., Al-Hasani, R., Kim, S., Tan, M. P., Huang, Y., Omenetto, F. G., Rogers, J. A., & Bruchas, M. R. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340(6129), 211-216. 2013.
Knöpfel, T., & Boyden, E. Optogenetic excitation of neurons with channelrhodopsins: light instrumentation, expression systems, and channelrhodopsin variants. Optogenetics: Tools for Controlling and Monitoring Neuronal Activity 196, 29. 2012.
Kravitz, A. V., Freeze, B. S., Parker, P. R. L., Kay, K., Thwin, M. T., Deisseroth, K., & Kreitzer, A. C. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466(7306), 622-626. 2010.
Lee, H.-M., Kwon, K.-Y., Li, W., & Ghovanloo, M. A wireless implantable switched-capacitor based optogenetic stimulating system. Paper presented at the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2014.
Lee, S. T., Williams, P. A., Braine, C. E., Lin, D.-T., John, S. W., & Irazoqui, P. P. A miniature, fiber-coupled, wireless, deep-brain optogenetic stimulator. IEEE Transactions on Neural Systems and Rehabilitation Engineering 23(4), 655-664. 2015.
Lenz, J. D., & Lobo, M. K. Optogenetic insights into striatal function and behavior. Behavioural Brain Research 255, 44-54. 2013.
Little, S., & Brown, P. Focusing brain therapeutic interventions in space and time for Parkinson’s disease. Current Biology 24(18), R898-R909. 2014.
Murase, S., Grenhoff, J., Chouvet, G., Gonon, F. G., & Svensson, T. H. Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neuroscience Letters 157(1), 53-56. 1993.
Nitsche, M., & Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology 527(3), 633-639. 2000.
Parker, K. L., Kim, Y., Alberico, S. L., Emmons, E. B., & Narayanan, N. S. Optogenetic approaches to evaluate striatal function in animal models of Parkinson disease. Dialogues in Clinical Neuroscience 18(1), 99. 2016.
Pashaie, R., Anikeeva, P., Lee, J. H., Prakash, R., Yizhar, O., Prigge, M., Chander, D., Richner, T. J., & Williams, J. Optogenetic brain interfaces. IEEE Reviews in Biomedical Engineering 7, 3-30. 2014.
Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., & Group, S. o. T. C. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology 120(12), 2008-2039. 2009.
Ruther, P., Holzhammer, T., Herwik, S., Rich, P. D., Dalley, J. W., Paul, O., & Holtzman, T. Compact wireless neural recording system for small animals using silicon-based probe arrays. Conf Proc IEEE Eng Med Biol Soc 2011, 2284-2287. 2011.
Siebner, H. R., Mentschel, C., Auer, C., & Conrad, B. Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson's disease. Neuroreport 10(3), 589-594. 1999.
Steinbeck, J. A., Choi, S. J., Mrejeru, A., Ganat, Y., Deisseroth, K., Sulzer, D., Mosharov, E. V., & Studer, L. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson's disease model. Nature Biotechnology 33(2), 204-209. 2015.
Sukhotinsky, I., Chan, A. M., Ahmed, O. J., Rao, V. R., Gradinaru, V., Ramakrishnan, C., Deisseroth, K., Majewska, A. K., & Cash, S. S. Optogenetic delay of status epilepticus onset in an in vivo rodent epilepsy model. PloS ONE 8(4). 2013.
Wang, J., Wagner, F., Borton, D. A., Zhang, J., Ozden, I., Burwell, R. D., Nurmikko, A. V., van Wagenen, R., Diester, I., & Deisseroth, K. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. Journal of Neural Engineering 9(1), 016001. 2011.
Welkenhuysen, M., Hoffman, L., Luo, Z., De Proft, A., Van den Haute, C., Baekelandt, V., Debyser, Z., Gielen, G., Puers, R., & Braeken, D. An integrated multi-electrode-optrode array for in vitro optogenetics. Scientific Reports 6. 2016.
Wentz, C. T., Bernstein, J. G., Monahan, P., Guerra, A., Rodriguez, A., & Boyden, E. S. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng 8(4), 046021. 2011a.
Wentz, C. T., Bernstein, J. G., Monahan, P., Guerra, A., Rodriguez, A., & Boyden, E. S. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. Journal of Neural Engineering 8(4), 046021. 2011b.
Wu, F., Stark, E., Im, M., Cho, I.-J., Yoon, E.-S., Buzsáki, G., Wise, K. D., & Yoon, E. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. Journal of Neural Engineering 10(5), 056012. 2013.
Zhang, F., Vierock, J., Yizhar, O., Fenno, L. E., Tsunoda, S., Kianianmomeni, A., Prigge, M., Berndt, A., Cushman, J., Polle, J., Magnuson, J., Hegemann, P., & Deisseroth, K. The microbial opsin family of optogenetic tools. Cell 147(7), 1446-1457. 2011.
Zhang, J., Laiwalla, F., Kim, J. A., Urabe, H., Van Wagenen, R., Song, Y.-K., Connors, B. W., Zhang, F., Deisseroth, K., & Nurmikko, A. V. Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. Journal of Neural Engineering 6(5), 055007. 2009.