簡易檢索 / 詳目顯示

研究生: 張文嚴
Chang, Wen-Yen
論文名稱: 利用新型燒結製程技術提升網印多晶矽太陽能電池 轉換效率之研究
Promotion of Paste Screen Printing Poly Crystalline Silicon Solar Cell Convert Efficiency with the Novel Firing Technology
指導教授: 方炎坤
Fang, Yuen-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 燒結太陽能電池
外文關鍵詞: Solar Cell, Firing
相關次數: 點閱:234下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現行多晶矽網印太陽能電池於量產時,常會有部分產品因導電漿料與矽材料的燒結不完導致降低轉換效率,造成生產線良率降低。因此如何改善這些瑕疵品使其轉換效率再提升,成為目前產業界極欲解決的課題。
    本論文報導利用高溫燒結爐(Centrotherm公司model DO-FF-8.600-300)及組合12組不同溫度及傳送速度對瑕疵品進行二次燒結的研究。目的在降低串聯電阻Rs,改善金屬接觸及填充因子(Fill Factor),藉以提升轉換效率。
    吾人利用效率量測儀器(Berger Flasher System)、光致電流檢測儀(Light Beam Induced Current System)、接觸電阻量測儀(Contact Resistance Mapping System : Core-scan)、量子效率測試儀(Quantum Efficiency System)、掃瞄式電子顯微鏡(SEM)等儀器來探討二次燒結後太陽能電池的轉換效率、串聯電阻(Rs)、填充因子(Fill Factor)等重要電性參數之變化。
    實驗顯示,以溫度在850℃且傳送速度在6800mm/min時可獲得較佳的結果;約 90% 的次級品,其串聯電阻約降低17mΩ,填充因子約增加20%及提昇4%的轉換效率。此外,二次燒結製程後之太陽能電池外觀,並無任何缺陷產生,成功的改良這些瑕疵品使生產線良率提升。

    Currently, the major issue in mass production for the screen printing polysilicon solar cell is the incompletely paste sintering in firing process caused lower conversion efficiency. Thus, how to recover the efficiency of these inferior cells to promote yield becomes the necessary and urgent.
    In this work, we used a commercial high-temperature firing furnace system (Centrotherm Co model DO-FF-8.600-300) with various sintering conditions to implement a best 2nd firing process to reduce series resistance, improving the top metal contact and fill factor for promotion of efficiency. Besides, we analyzed the cells after the 2nd firing using Berger system, LBIC, Core-scan, QE system and SEM for measuring efficiency, Rs, Fill Factor and morphology analyzing , respectively.
    Experimental results show the best 2nd firing process is under 850oC and 6800mm/min of the conveyer speed. With the 2nd firing process, almost 90% of the inferior cells can reduce Rs 17Ω,increase of 20% Fill Factor, and thus promoting 4% efficiency. Besides, the 2nd firing process doesn't harm any appearance of the cell.

    目 錄 中文摘要 I 英文摘要 III 誌謝 V 目 錄 VI 圖表目錄 VIII 第一章 導論 1 1-1 前言 1 1-2 多晶矽太陽能電池優勢與研究方向 3 第二章 多晶矽太陽能電池之基本原 理、特性及結構設計 5 2-1多晶矽太陽能電池之基本原理 5 2-2-1 太陽能電池基本結構 5 2-1-2 太陽能電池結構內的半導體光電效應 5 2-1-3 能量轉換的過程 7 2-2 多晶矽太陽能電池之基本特性 9 2-2-1 短路電流 9 2-2-2開路電壓 11 2-2-3 輸出特性 12 2-2-4 轉換效率 14 2-3 多晶矽太陽能電池設計與製作 15 2-3-1 太陽能電池結構設計 15 2-3-2 金屬電極設計 17 2-4影響太陽能電池轉換效率的原因 20 2-5 背電場(Back Surface Filed) Bump缺陷的影響 23 2-5-1 背電場製作 23 2-5-2 鋁漿材料 24 2-5-3 Bump缺陷形成原因 24 第三章 製程步驟、設備與量測儀器 25 3-1 製程步驟 25 3-1-1 實驗說明 25 3-1-2 實驗步驟流程 25 3-2製程設備 26 3-2-1 網印系統(Printing System) 26 3-2-2 高溫燒結系統(Firing System) 28 3-3量測設備與測試方法 30 3-3-1 效率量測(Berger System) 30 3-3-2 LBIC量測(Light Beam Induced Current) 31 3-3-3 接觸電阻量測(Contact Resistance Mapping) 31 3-3-4 量子效率量測(Quantum Efficiency) 32 3-3-5 掃瞄式電子顯微鏡(Scanning Electron Microscope) 33 第四章 實驗結果分析與討論 34 4-1 效率相關電性參數量測與分析 34 4-2 LBIC(Light Beam Induced Current)分析與討 論 34 經由LBIC之mapping量測分析如下: 34 4-3 接觸電阻(Contact Resistance Mapping)分析與 討論 35 4-4 量子效率(Quantum Efficiency)分析與討論 36 4-5 SEM觀察分析與討論 36 4-6 總結 37 第五章 結論與未來展望 38 5-1 結論 38 5-2 未來展望 39 參考文獻 40 圖 表 目 錄 表3-1 實驗溫度、傳送速度設定及實驗用低轉換效率太陽能電池相關電性參數 43 表4-1 二次燒結後之電性量測參數 44 圖1-1 多晶矽太陽能電池結構圖 45 圖1-2 多晶矽太陽能電池構造剖面圖 46 圖2-1 太陽能電池基本結構圖 47 圖2-2 無光照及光照時I-V特性曲線圖 48 圖2-3 負載電路示意圖 49 圖2-4 太陽光被元件吸收 50 圖2-5 產生電子電洞對 51 圖2-6 載子的移動 52 圖2-7 電子電洞的會合 53 圖2-8 I-V曲線中的短路電流Isc 54 圖2-9 I-V曲線中的開路電壓Voc 54 圖2-10 無串並聯之等效電路圖 55 圖2-11 加入串並聯之等效電路圖 55 圖2-12 太陽能電池的輸出特性圖 56 圖2-13 並聯電阻Rs示意圖 57 圖2-14 高填充因子的太陽能電池 58 圖2-15 低填充因子的太陽能電池 58 圖2-16 矽晶體太陽能電池結構圖 59 圖2-17 太陽能電池表面金屬接觸示意圖 60 圖2-18 上電極和金屬導線設計圖 61 圖2-19 單體電池尺寸 62 圖2-20 高摻雜效應 62 圖2-21 P/P+介面製程結構 63 圖2-22 Bump Defect成份分析 64 圖2-23 Bump Defect SEM 64 圖3-1 太陽能元件製程流程圖 65 圖3-2 網印製程機台結構示意圖 66 圖3-3 第一板網印背面電極 66 圖3-4 第二板網印背面電場 67 圖3-5 第三板網印正面電極和金屬導線 67 圖3-6 網紗結構圖 68 圖3-7 網紗搭配乳劑之結構圖 68 圖3-8 網版內部點與點之張力≦2NT為良品 69 圖3-9 網版內部點與點之張力≧2NT為不良品 69 圖3-10 高溫燒結系統結構圖 70 圖3-11 高溫燒結系統之各加熱區段 70 圖3-12 Berger系統電性量測儀器 71 圖3-13光源模擬器 72 圖3-14 光源強度控制器 72 圖3-15 Berger量測之I –V曲線圖 73 圖3-16 LBIC量測原理 74 圖3-17 短路電流量測 74 圖3-18 LBIC scan in X-axis 75 圖3-19 Rc電阻量測方式 75 圖3-20 電壓與Rc互為正比關係 76 圖3-21 FF : 72%;Fired at T-45℃;Under-firing 76 圖3-22 FF : 75%;Fired at T℃;Normal firing 77 圖3-23 FF : 62%;Fired at T+45℃;Over-firing 77 圖3-24 QE量儀功能簡介 78 圖3-25 太陽能電池的量子效率(QE) 78 圖3-26 Review Scanning Electron Microscope Vision 79 圖4-1 二次燒結溫度850℃和傳送速度6800mm/min 之效率電性曲線圖 80 圖4-2溫度700℃和傳送速度6800mm/min (LBIC) 80 圖4-3 溫度700℃和傳送速度6900mm/min (LBIC) 81 圖4-4 溫度700℃和傳送速度7000mm/min (LBIC) 81 圖4-5 溫度750℃和傳送速度6800mm/min (LBIC) 82 圖4-6 溫度750℃和傳送速度6900mm/min (LBIC) 82 圖4-7 溫度750℃和傳送速度7000mm/min (LBIC) 83 圖4-8 溫度800℃和傳送速度6800mm/min (LBIC) 83 圖4-9 溫度800℃和傳送速度6900mm/min (LBIC) 84 圖4-10 溫度800℃和傳送速度7000mm/min (LBIC) 84 圖4-11 溫度850℃和傳送速度6800mm/min (LBIC) 85 圖4-12 溫度850℃和傳送速度6900mm/min (LBIC) 85 圖4-13 溫度850℃和傳送速度7000mm/min (LBIC) 86 圖4-14 溫度700℃和傳送速度6800mm/min (Core_scan) 86 圖4-15 溫度700℃和傳送速度6900mm/min (Core_scan) 87 圖4-16 溫度700℃和傳送速度7000mm/min (Core_scan) 87 圖4-17 溫度750℃和傳送速度6800mm/min (Core_scan) 88 圖4-18 溫度750℃和傳送速度6900mm/min (Core_scan) 88 圖4-19 溫度750℃和傳送速度7000mm/min (Core_scan) 89 圖4-20 溫度800℃和傳送速度6800mm/min (Core_scan) 89 圖4-21 溫度800℃和傳送速度6900mm/min (Core_scan) 90 圖4-22 溫度800℃和傳送速度7000mm/min (Core_scan) 90 圖4-23 溫度850℃和傳送速度6800mm/min (Core_scan) 91 圖4-24 溫度850℃和傳送速度6900mm/min (Core_scan) 91 圖4-25 溫度850℃和傳送速度7000mm/min (Core_scan) 92 圖4-26 QE量測結果 92 圖4-27 溫度700℃之SEM量測結果 93 圖4-28 溫度750℃之SEM量測結果 93 圖4-29 溫度800℃之SEM量測結果 94 圖4-30 溫度850℃之SEM量測結果 94

    [1] 楊德仁編著,「太陽能電池材料」,五南出版社,台灣 (2009)
    [2] 林明獻編著,」太陽電池技術入門」,全華科技圖書股份有限公司,台灣 (2008)
    [3] 黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳編著,」太陽電池」 ,五南出版社,台灣 (2011)
    [4] 馮垛生主編,宋金蓮、趙慧、林珊、趙海波編著,」太陽能發電原理與應用」 ,五南出版社,台灣 (2010)
    [5] H. Sinton, R.A., and A.Cuevas, 「Contactless determination of current-
    voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data」, Applied Physics Letters, vol.69, no. 17: AIP, pp. 2510-2512, 1996.
    [6] Baruch, P., A. De Vos, P. T. Landsberg, and J. E. Parrott, 「On some thermodynamic aspects of photovoltaic solar energy conversion」, Solar Energy Materials and Solar Cells, vol. 36, pp. 201-222, 1995.
    [7] M.A. Green, 「Accuracy of analytical expressions for solar cell fill factors」, Solar Cells, vol. 7, Dec. 1982, pp. 337-340.
    [8] Honsberg, C. B., R. Corkish, and S. P. Bremner, 「 A New Generalized Detailed Balance Formulation to Calculate Solar Cell Efficiency Limits」, 17th European Photovoltaic Solar Energy Conference, pp. 22-26, 2001.
    [9] Swanson, R., 「Approaching the 29% limit efficiency of silicon solar cells」, Thirty-First IEEE Photovoltaic Specialists Conference, Lake buena Vista, FL, USA, 01/2005, pp. 889-94, 2005.
    [10] Martin A. Green著,曹昭陽、狄大衛、李秀文譯,」太陽電池工作原理、技術與系統應用」,五南出版社,台灣 (2009)
    [11] Stuart R Wenham, Martin A. Green, Muriel E. Watt, Richard Corkish 著,曹昭陽、狄大衛譯,」應用太陽電池」,五南出版社,台灣 (2009)
    [12] 高鵬、劉繼偉、高文秀編著,」晶體硅光伏電池燒結工藝及調節」,廈門大學機電工程系,太陽能期刊,2006(3)
    [13] Herber A. Wade., 「Solar photovoltaic systems technical training manual & Solar photovoltaic project development」, UNESCO, pp. 113-139, 2004.
    [14] Serreze, H. B., 「Optimizing Solar Cell Performance by Simultaneous Consideration of Grid Pattern Design and Interconnect Configurations」, 13th IEEE Photovoltaic Specialists Conference, Washington, D.C., USA, pp. 1-8, 1978.
    [15] Orr, W.A. Arienzo, M., 「Investigation of polycrystalline silicon back surface field solar cells」, IEEE Electron Devices Society, p. 1151, 2005.
    [16] Jalali, R. Faizabadi, E. Behafarid, F., 「The modeling front contact metallization grid pattern for multi crystalline silicon solar cell」, Infrared and Millimeter Waves, 2007 and the 2007 15th International Conference on Terahertz Electronics. p. 452, 2008.
    [17] Satoshi Okamoto Rui Mikami Ryo Ozaki Yoshiroh Takaba Hiroshi Taniguchi Masafumi Shimizu Ecological Technol. Dev. Center, Sharp Corp., Nara, 「High-Efficiency Multi-Crystalline Silicon Solar Cells Using Screen-Printed Electrode and Wet Etching Textured Surface」, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, p. 1259, 2007.
    [18] J. Domaradzki, "Light-beam-induced current (LBIC) technique for semiconductors and ICs testing", Proc. SPIE 5064, p. 269, 2003.
    [19] Litvienenko S., Ilchenko L., Kaminski A., Kolenov S., Laugier a., Smirnov E., Strikha V., Skryshevsky V., "Investigation of the solar cell quality by LBIC-like image techniques", Materials Science and Engineering, vol. B71, pp. 238-243, 2000.
    [20] Flohr Th., Helbig R., "Determination of minority-carrier lifetime and surface recombination velocity by optical-beam-induced-current measurements at different light wavelengths", J. Appl. Phys., vol. 66, nr 7, pp. 3060-3065, 1989.
    [21] Ciocan, R. Li, Z. Feldman, A. Donohue, J., "System for high accuracy internal quantum efficiency measurement", Photovoltaic Specialists Conference (PVSC), p. 001862, 2009.

    下載圖示 校內:2016-07-27公開
    校外:2016-07-27公開
    QR CODE