簡易檢索 / 詳目顯示

研究生: 蔡佩樺
Tsai, Pei-Hua
論文名稱: 以等溫加熱蒸氣誘導自組裝法製備一元以及二元膠體晶體之探討
Fabrication of unary and binary colloidal crystals by isothermal evaporation induced self-assembly
指導教授: 吳毓純
Wu, Yu-chun
共同指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 125
中文關鍵詞: 等溫加熱蒸氣誘導自組裝電雙層膠體晶體蒸發速率
外文關鍵詞: Isothermal heating evaporation induced self assembly (IHEISA), electric double layer, colloidal crystals, evaporation rate
相關次數: 點閱:72下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗選用二氧化矽 (Silica, SiO2) 和乳膠 (Latex, PS) 兩種粉體來進行等溫加熱蒸氣誘導自組裝 (Isothermal Heating Evaporation Induced Self-Assembly, IHEISA) 研究。SiO2和 PS 膠體球則分別是利用 Stöber 法以及分散聚合 (dispersion polymerization) 的製程來取得。
    在一元膠體晶體自組裝方面,不同 pH 值的溶液會影響粒子表面的帶電行為,實驗結果發現,酸鹼的添加雖然會增加粒子的表面電位有助於粒子得分散,但電解質的添加亦會造成系統中離子濃度的上升而使得店雙層厚度下降,導致粒子間容易有弱凝聚的現象產生而無法進行自組裝反應。此外,本研究顯示溶劑的蒸發速率為影響粒子排列程度之主要參數,欲獲得高整齊度的膠體晶體,必須非常小心的控制蒸發速率,因其具有一定的最佳化區間,並與粒子粒徑、粒子密度以及載玻片放置等參數有密切的關聯性。當粒子受重力影響較容易產生沉降或是粒子本身動能較小時,則需給予一較快的蒸發速率使粒子能傳送至液面並於液面行自組裝。設定另一影響粒子排列程度之參數為沉積玻片的表面性質,發現其對於粒子的排列程度影響不大。而為了避免電解質的添加而造成弱凝聚現象,行 IHEISA 反應的 pH 區間則以原始溶液的 pH 範圍進行探討。
    在二元膠體晶體的製備方面,以 PS 以及 SiO2 兩種膠體球彼此呈相斥的條件下進行二元膠體晶體之等溫加熱蒸氣誘導自組裝研究,且由前一部分一元膠體晶體的實驗發現,電解質的添加容易造成粒子間的弱凝聚現象而無法行自組裝,所以採用相混後之原始 pH 區間進行 IHEISA 反應,pH區間位於 9 ~10之範圍內。實驗結果證實製備二元膠體晶體自組裝行為強烈受到兩種膠體粒子的粒徑比 (γS/L) 以及數量比 (N) 的影響,其最佳蒸發速率亦隨之改變,與一元膠體晶體的自組裝行為有著明顯的差異。

    Choosing the powder of silica (SiO2) and latex (PS) to perform in the isothermal heating evaporation induced self-assembly (IHEISA) research. Silica and latex prepared with the process of Stöber and dispersion polymerization respectively.
    In the aspect of the self assembly of unary colloidal crystal films (C.C.Fs), solutions with various pH values will affect the behavior of potential on particle surface. Observation from the experiment results that show although the addition of acid or base will increase the surface potential of particles but electrolyte added will contribute to the concentration of ions increasing and decrease the depth of the electric double layer instead. These will cause the flocculated between particles easily and unable proceed the following IHEISA process. Besides, set the evaporation rate of the solvent and the surface properties of the substrate as the parameters which affect the array degree of the colloidal crystal films. And observe the pH range which is suitable for self-assembly. Further, the relation between the evaporation rate and particle size, deposition methods, concentration of the suspension and tilted angle of the substrate on the thickness of the colloidal crystal films will also be probed in the research. More, find out one thing in the research is that controlling the evaporation rate carefully will get the colloidal crystal films with high array degree. Because there are the optimum range for evaporation rate and it has the closed relation with the particle size、particle density、substrate position and so on.
    In the aspect of the self assembly of binary colloidal crystal films, take the condition of repelling potential between the surface of SiO2 and PS colloidal particle to take part in the IHEISA process research. And find out from the front C.C.Fs experiment, electrolyte added easily cause the weakly flocculated between particles and unable proceed the following IHEISA process. So it take the original pH after mixing to continue the following IHEISA reaction, and the pH range locates from 9 to 10.The experiment results reveal that the preparation of the binary colloidal crystal films is strongly affected with the particle size ration (rS/L) and number ratio (N) of the two colloidal particles and, and while the optimum evaporation rate changed, there are an obviously difference compare to the self-assembly of the C.C.Fs.

    前言………………………………………………………………………1 1.1 動機………………………………………………………………………1 1.2 研究方向與目的…………………………………………………………2 第二章 文獻回顧………………………………………………………………………3 2.1 光子晶體膜的特性以及其應用………………………………………… 3 2.2 單一分佈球型二氧化矽顆粒……………………………………………4     2.2.1 溶膠凝膠製程………………………………………………………5     2.2.2二氧化矽粒子之成核成長機制………………………………………9 2.2.3 Ostwald ripening…………………………………………………………………………12 2.2.4 二次成核 ( Secondary nucleation )………………………………14 2.3 等溫加熱蒸氣誘導自組裝………………………………………………14 2.4 膠體溶液的穩定性………………………………………………………16 2.4.1 布朗運動…………………………………………………………18 2.4.2 凡德瓦爾作用力 (van der waals force)…………………… 21 2.4.3 靜電作用力(electrostatic force)…………………………………21 2.4.3.1 膠體的表面電荷以及電雙層…………………………21 2.4.3.2 影響靜電作用能的因素………………………………26 2.4.4 DLVO理論…………………………………………………………28 2.5 水平沉積以及垂直沉積………………………………………………… 30 2.6 毛細力(Capillary Force).........................33 第三章 實驗方法與步驟………………………………………………………… 36 3.1 起始原料…………………………………………………………………36 3.1.1單一粒徑球型氧化矽的製備………………………………………36 3.1.2單一粒徑球型乳膠的製備…………………………………………38 3.2一元晶體膜的自組裝…………………………………………………………40 3.3二元晶體膜的自組裝…………………………………………………………40 3.4 特性分析………………………………………………………………………43 3.4.1表面型態以及粒子排列有序程度之觀察……………………………43 3.4.2 粒徑分佈量測 (Particle size distribution, PSD)…43 3.4.3 表面電位量測 (Zeta potential analysis)……………………………44 3.4.4排列程度分析 (Lucia軟體)……………………………..………….44 第四章 結果與討論……………………………………………………………….45 4.1 均一粒徑SiO2膠體球的製備…………………………………………...45 4.1.1避免二次成核之參數控制…………………………………………47 4.1.2 控制粒徑大小之影響參數………………………………………...50 4.1.3 討論………………………………………………………………...52 4.2均一粒徑PS膠體球的製備………………………………………………55 4.3影響3D有序一元膠體晶體參數之探討………………………………..59 4.3.1 電位以及電解質的添加對膠體懸浮液之分散性以及自組裝 的影響 …………………………………………………………….59 4.3.2 懸浮液中的電解質濃度對粒子間作用能的計算並作圖………...61 4.3.3 膠體晶體自組裝…………………………………………………...70 4.3.4 蒸發速率的影響…………………………………………………...75 4.3.5沉積方法及其沉積位置對自組裝之影響…………………………78 4.3.5.1沉積方式及其3D截面排列之探討………………………..78 4.3.5.2 垂直沉積位置對排列程度之影響…………………………82 4.3.5.3水平沉積以及垂直沉積間結晶蒸發速率之比較………….82 4.3.5.4 討論…………………………………………………………87 4.3.6 蒸發速率與粒子粒徑、沉積方式、懸浮液濃度以及傾斜角之 間的關係……………………………………………………………………87 4.3.6.1 蒸發速率對顆粒之粒徑以及質量的影響………………88 4.3.6.2 蒸發速率和濃度之間的關係……………………………90 4.3.6.3 蒸發速率和垂直沉積傾斜角度之關係…………………92 4.3.6.4 討論………………………………………………………95 4.3.7 載玻片表面前處理對排列程度之影響……………………………98 4.4影響3D有序二元晶體膜之參數…………………………………………………102 4.4.1 電位……………………………………………………………102 4.4.2 蒸發速率對二元粒子自組裝的影響…………………………106 4.4.3 數量比及粒徑比的控制…………………………………………112 4.4.4討論………………………………………………………………116 第五章 結論 118 參考文獻 121

    1. M. Li, Q. Liao, Y. Liu, Z. Li ,J. Wang, L. Jiang, and Y Song, “A white-lighting LED system with a highly efficient thin luminous film,” Appl. Phys. A. 98: 85–90 (2010).
    2. K. Lee, S. A. Asher, “Photonic crystal chemical sensors: pH and ionic strength,” J. Am. Chem. Soc., 122, 9534 (2000).
    3. K. Takano and K. Nakagawa,”Denshi joho tsushin gakkai ronbunshi,” C: Erekutoronikusu (in Japanese) [Tran. IEICE, C], E84C,669 (2001).
    4. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCordMaughon, J Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder and J. W. Perry,” Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature, 398, 51 (1999).
    5. S. H. Im, Y. T. Lim, D. J. Suh, and O. O. Park, “Three-dimensional self-assembly of colloids at a water-air interface: A novel technique for the fabrication of photonic bandgap crystals ”, Adv. Master., 14, No. 19, October 2 (2002).
    6. S. Wong, V. Kitaev, and G. A. Ozin , “Colloidal crystal films: advances in universality and perfection,” J. Am. Chem. Soc., 125, 15589-15598 (2003).
    7. S. Y. Lin, E. Chow, V. Hietala, P. R. Villennuve and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” vol 282, science (1998).
    8. J. D. Joannopoulos, P. R. Villeneuve & S. Fan, “Photonic crystals: putting a new twist on light”, nature, vol 386, 13 march (1997).
    9. J. D. Joannopoulos, “Self-assembly lights up,” nature, vol 414, 15 november (2001).
    10. P.R. Shashidhar, “Building Better Photonic Crystals,” science, vol 295, 29 march (2002).
    11. D. J. Norris and Y. A. Vlasov, “Chemical approaches to three-dimensional
    semiconductor photonic crystals,” Adv. Master, 13, No. 6, March 16 (2001).
    12. V. Kitaev and G. A. Ozin , “Self-Assembly Surface Patterns of Binary Colloidal Crystals ,” Adv. Master., 15, No. 1, January 3 (2003).
    13. S. Wong, V. Kitaev, and G. A. Ozin , “Colloidal Crystal Films: Advances in Universality and Perfection,” J. AM. CHEM. SOC., 125, 15589-15598 (2003).
    14. Yablonovitch, E.,”Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., 58, 2059 (1987).
    15. John, S., ”Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., 58, 2486 (1987).
    16. M. L. Q. Liao, Y. L. Z. Li, J. Wang and Y Song, “A white-lighting LED system with a highly efficient thin luminous film,” Appl Phys A, 98: 85-90 (2010).
    17. W. Stober, A finks and E. bohn, “Controlled growth of monodispersed silica spheres in the micron size range,” Journal of Colloidal and Interface Science 26, 62-69 (1968).
    18. C. J. Brink and G. W. Scherer, “Sol-gel science,” Academic Press (1990).
    19. W. Stober , A. Fink,and E. Bohn, J. Colloid Interface Sci. 26,62 (1968).
    20. Van Helden, A. K. Jansen, J. W., and A. Vrij, J. Colloid Interface Sci. 81,354 (1981).owth with a slow initiation step: A growth-model for silica particles from alkoxides” Journal of Colloid and Interface Science, 132, 13-21 (1989).
    21. H. Giesche, “Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics,” J. Eur. Ceram, Soc. 14, 189-204 (1994).
    22. S.L. Chen, P. Dong, G.H. Yang, J. J. Yang, “Kinetics of formation of monodispersed colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate,” Ind. Eng. Chem. Res. 35, 4487-4493 (1996).
    23. T. Matsoukas and E. Gulari., “Monomer-addition growth with a slow initiation step: A growth-model for silica particles from alkoxides” Journal of Colloid and Interface Science, 132, 13-21(1989).
    24. T. Matsoukas, E. Gulari, J. Coll, Interf. Sci 124 (1), 252-261 (1988).
    25. T. Matsoukas, E. Gulari, J. Coll, Interf. Sci 132 (1), 13-21 (1988).
    26. G. H. Bogush, M. A. Tracy, C. F. Zukoski and J. Non-Cryst. Solid 104 (1), 95-106 (1988).
    27. G. H. Bogush, C. F. Zukoski, J. Coll. Interf. Sci 142 (1), 19-34 (1991).
    28. C. J. Brinker, C. W. Scherer, ”Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing,” Academic Press Inc., San Diego (1990).
    29. A. V. Blaaderen, J. V. Geest, A. Vrij, “Monodisperse colloids silica spheres from tetraalkoxysilanes: particle formation and growth mechanism,” J. Colloid Interface Sci. 154, 481-501 (1992).
    30. I. A. Rahman, P. Vejayakumaran, C. S. Sipaut, J. Ismail, M. Abu Bakar, R. Adnan and C. K. Chee, “ Effect of anion electrolytes on the formation of silica nanoparticles via the sol-gel process,” Ceramics International 32, 691-699 (2006).
    31. A. V. Blaaderen, J. V. Geest and A. Vrij, “Monodisperse colloids silica spheres from tetraalkoxysilanes: particle formation and growth mechanism,” J. Colloid Interface Sci. 154, 481-501 (1992).
    32. V.K. Lamer, R. H. Dinegar, J. Am, Chem, Soc. 72, 4847 (1950).
    33. G. H. Bogush, M. A. Tracy, C. F. Zukoski, J. Non-Cryst. Solids 104 (1), 95-106 (1988).
    34. G. H. Bogush, C. F. Zukoski, J. Coll, Interf. Sci. 142 (1), 19-34 (1911).
    35. A. C. Pierre, ”Introduction to sol-gel processing,” Kluwer Academic Publishers, Boston (1998).
    36. IIer, R. “The Chemistry of silica,” Wiley, New York (1979)
    37. K. S. Chou and C. C. Chen, “The critical conditions for secondary nucleation of silica colloids in a batch Stöber growth process,”Ceramic International 34. 1623-1627 (2008).
    38. S. L. Chen, P. Dong, G. H. Yang and J. J. Yang, “Characteristic Aspects of Formation of New Particles during the Growth of Monosize Silica Seeds,” Journal of colloid and interface science 180, 237-241 (1996).
    39. H. E. Bergna and W. O. Roberts, “Colloidal silica :fundamentals and applications,” (2006).
    40. S. K. Park, K. D. Kim and H. T. Kim, “Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles,” Colloidal and Surfaces 197, 7-17 (2002).
    41. P. C. Hiemenz, “Principles of colloid and surface chemistry,” second edition, Marcel Dekker, New York (1986).
    42. J. Hong, C. K. Hong and S. E. Shim, ”Synthesis of polystyrene microspheres by dispersion polymerization using poly (vinyl alcohol) as a steric stabilizer in aqueous alcohol media,” Colloids and Surface A: Physicichem. Eng. Aspects 302, 225-233 (2007).
    43. V. Bulmus, A. Tuncel and E. Piskin, ”Production of Polymethylmethacrylaye Particles by Dispersion Polymerization in Aqueous Media with Ceric Ammonium Nitrate,” Journal of Applied Polymer Science, Vol. 60, 697-704 (1996).
    44. X. Zhang, S. Shen, L. Fan, ”Uniform Polystyrene Particles by Dispersion Polymerization in Different Dispersion Medium,”polymer Bulletin 61, 19 26 (2008).
    45. Q. Liu, L. Wang, A. Xiao, H. Yu, Q. Tan, J. Ding and C. Yu, “Controllable preparation of monodisperse polystyrene microspheres with different sizes by dispersion polymerization,” Macromol. Symp, 261, 113-120(2008).
    46. T. Bahar and A. Tuncel, “Monodisperse Poly(p-chloromethylstyrene) Microbeads by Dispersion Polymerization,” Polymer Engineering and Science, Vol. 39, No. 10,October (1999).
    47. J. G. Fleming, S. Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95m,” Opt, Lett., 24. 49 (1999).
    48. X. Zhang, S. Shen, L. Fan, “Uniform polystyrene particles by dispersion polymerization in different dispersion medium,” polymer bulletin 61, 19 26(2008).
    49. Sydney Ross, “Colloidal systems and interfaces,” Wiley-
    Interscience publication, New York (1988).
    50. W. B. Russel, D. A. Saville, and W. R. Schowalter, “Colloidal Dispersion,” New York (1989).
    51. H. C. Hamaker, “The London-van der Waals attraction between spherical particles,” Physica, 4, 1058-1072 (1937).
    52. P. C. Hiemenz, “Principle of colloid and surface chemistry,” second edition, Marcel Dekker, New York (1986).
    53. L. Bergstrom, “Hamaker constants of inorganic materials,” Adv. Colloid Interface Sci., 70, 125-169 (1997).
    54. A. R. Student, E. Amstad, M. Antoni, and L. J. Gauckler, “Rheology of concentrated suspensions containing weakly attractive alumina nanoparticles,” J. Am. Ceram. Soc., 89[8] 2418-2425 (2006).
    55. D. H. Everett, “Basic principle of colloid science,” Royal Society of Chemistry, London (1988).
    56. A. Pettersson, G. Marino, A. Pursigeimo, and J. B. Rosengolm, “Electrosteric stabilization of Al2O3, ZrO2 and 3Y-ZrO2 suspensions: effect of dissociation and type of polyelectrolyte,” J. Colloid Interface Sci., 228, 73-81 (2000).
    57. Hiemenz, Paul C. “Principles of colloidal and surface chemistry,” Third edition, New York (1997).
    58. J. S. Reed, “Principles of ceramics prosessing,” Second edition, New York (1986).88
    59. 林幸慧,以聚丙烯酸銨分散之次微米氧化鋁粉末的流變、注漿成形及燒結行為,國立成功大學資源工程學系,碩士論文,中華民國九十八年。
    60. J. N. Israelachvili, ”Intermolecular and surface forces,” second edition, Academic Press, London (1992).
    61. A. M. Islam, B. Z. Chowdhry and M. J. Snowden, “Heteroaggregation on colloidal dispersions,” Advances in Colloid and Interface Science, 62, 109-136 (1995).
    62. J. A. Lewis, “Colloidal processing of ceramics,” J. Am. Ceram. Soc., 83[10] 2341-2359 (2000).
    63. J. Wiley and S. Ltd, “Colloids and Interfaces with Surfactants and Polymers (An Introduction),” USA (2007).
    64. P. A. Kralchevsky* and N. D. Denkov, “Capillary forces and structuring in layers of colloid particles,” Current Opinion in Colloid & Interface Science 6 383-401 (2001)
    65. M. Cerbelaud, A. Videcoq and P. Abelard, C. Pagnoux, F. Rossignol, and R. Ferrando, “Heteroaggregation between Al2O3 Submicrometer Particles and SiO2 Nanoparticles: Experiment and Simulation,” Langmuir 24, 3001-3008 (2008).
    66. H. Cong and W. Cao*, “Colloidal Crystallization Induced by Capillary Force,” Langmuir, 19, 8177-8181 (2003).
    67. Y. Fu, Z. Jin*, G. Liu and Y. Yin, “Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method,” Synthetic Metals, 1744-1750 (2009).
    68. P. Jiang, J. F. Bertone, K. S. Hwang and V. L. Colvin, Chem. Master., 11, 2132 (1999).
    69. J. Wiley and Sons, “colloidal systems and interfaces,” Canada (1988).
    70. D. J. Shaw, “Introduction to Colloid and Surface Chemistry, forth edition,” (1980).
    71. Z. Xhou and Z. S. Zhao, “Opal and inverse fabricated with a flow-controlled vertical deposition method,” Langmuir, 21, 4717 (2005).
    72. B. T. Holland, C. F. Blanford, T. Do and A. Stein, “Synthesis of highly order, three-dimensional, macroporous structure of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites,” Chemistry of Materials, 11, 795 (1999).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE