簡易檢索 / 詳目顯示

研究生: 蔡佳璋
Tsai, Chia-Chang
論文名稱: 碳圓環跟碳微管於外場之下的電子性質跟磁性
Electronic and magnetic properties of carbon tori and carbon nanotubes under external fields
指導教授: 林明發
Lin, Ming-Fa
徐鳳麟
Shyu, Feng-Lin
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 120
中文關鍵詞: 磁性電子性質碳圓環碳微管
外文關鍵詞: magnetic properties, carbon tori, carbon nanotubes
相關次數: 點閱:62下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文摘要
      本篇論文研究了零維的碳圓環以及一維的碳微管的電子性質跟磁性。我們詳細地調查了影響這些性質的因素,包含磁場的大小與方向、橫向電場、半徑、高度、旋度角以及溫度。研究的模型是採用第一鄰近的能帶緊束法,曲度效應也包含在計算之中。磁場會破壞狀態的簡併度、產生AB振盪效應、改變邊緣狀態、以及改變子能帶的曲度(或者有效質量)。除了AB振盪效應之外,橫向電場對碳圓環的影響與磁場的影響是類似的。由於量子尺度效應的關係,碳圓環與碳微管在電子性質(如態密度、狀態簡併度以及能隙)上的釵h重要差異,也在論文中被詳細地探討。電子性質的特徵將會直接反應在磁性的變化上面。磁性以及磁反應的強度主要由幾何結構、磁場的大小所決定。碳圓環跟碳微管在磁性上有很大的差異,例如在磁場很小的時候,常磁性或者反磁性的表現、磁化率、以及臨界磁場。

     Zero-dimensional carbon tori and one-dimensional carbon nanotubes are studied for their electronic and magnetic properties. The effects due to the direction and the magnitude of the magnetic field, the transverse electric field, the height, the radius, the chiral angle, and the temperature are investigated in detail. The nearest-neighbor tight-binding model with the curvature effects are used to calculate electronic structures. The magnetic field might destroy state degeneracy, lead to semiconductor-metal transitions, modulate energy spacings, cause Aharonov-Bohm (AB) oscillations, alter edge states, and change subband curvatures or effective masses. The transverse electric field in carbon tori could induce similar effects except the AB oscillations. Due to the quantum size effect, there are certain important differences between carbon tori and carbon nanotubes in electronic properties, such as density of states, state degeneracy, and energy gap. The main features of electronic properties are directly reflected in magnetic properties. Magnetism and strength of magnetic response are mainly determined by the geometric structures and the magnitude and the direction of magnetic field. Carbon tori quite differ from carbon nanotubes in magnetic properties, e.g., the paramagnetic or diamagnetic behavior at small magnetic field, the magnetic susceptibility, and the critical magnetic field in changing magnetism.

    TABLE OF CONTENTS Abstract..........................................................................................................................1 Chapter 1. Introduction..................................................................................................2 References......................................................................................................................9 Chapter 2. Magnetoelectronic States of Carbon Toroids 2.1 Introduction............................................................................................................14 2.2 Theory.....................................................................................................................15 2.3 Results and Discussion...........................................................................................17 2.4 Conclusion..............................................................................................................20 References....................................................................................................................21 Chapter 3. Magnetization of Armchair Carbon Tori 3.1 Introduction............................................................................................................24 3.2 Magnetoelectronic Properties within the Tight-Binding Model............................25 3.3 Magnetoelectronic States and Magnetization........................................................28 3.4 Concluding Remarks..............................................................................................32 References....................................................................................................................34 Chapter 4. Electronic Properties of Carbon Tori in External Fields 4.1 Introduction............................................................................................................36 4.2 Tight-Binding Model in Electric and Magnetic Fields..........................................37 4.3 Electronic Properties..............................................................................................39 4.4 Concluding Remarks..............................................................................................43 References....................................................................................................................45 Chapter 5. Magnetoelectronic Properties of Chiral Carbon Nanotubes and Chiral Carbon Toroids 5.1 Introduction...........................................................................................................47 5.2 Theory....................................................................................................................49 5.3 Results and Discussion..........................................................................................51 5.4 Conclusion.............................................................................................................56 References...................................................................................................................58 Chapter 6. Curvature Effect and Critical Magnetic Field on Magnetization of Carbon Nanotubes 6.1 Intoduction............................................................................................................61 6.2 Theory...................................................................................................................63 6.3 Magnetic Properties..............................................................................................65 6.4 Concluding Remarks............................................................................................69 References..................................................................................................................70 Chapter 7. Summary and Future Researches.............................................................72

    1 R. Iley and H.L. Riley, J. Chem. Soc. 1362 (1948).

    2 H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smelley, Nature (London) 318, 162 (1985).

    3 S. Iijima, Nature 354, 56 (1991).

    4 S. Iijima and T. Ichibashi, Nature 363, 603 (1993).

    5 D. S. Bethune, C. H. Kiang, M. S. Deveries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyars, Nature 363, 605 (1993).

    6 J. Liu, H. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley, S. J. Tans, and C. Dekker, Nature 385, 780 (1997).

    7 S. Iijima, T. Ichihashi, and Y. Ando, Nature 356, 776 (1992); S. Iijima, T. Ichihashi, ibid, 363, 603 (1993).

    8 P. Carvert, Nature 357, 365 (1992).

    9 M. Ge and K. Sattler, Science 260, 515 (1993).

    10 A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273, 483 (1996).

    11 C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy, D. E. Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, Nature 388, 756 (1997).

    12 H. Dai, A. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 260, 471 (1996).

    13 J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature 391, 59 (1998).

    14 T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature 391, 62 (1998).

    15 P. Kim, T. W. Odom, J. L. Huang, and C. M. Lieber, Phys. Rev. Lett. 82, 1225 (1999).

    16 M. Ouyang, J. L. Huang, C. L. Cheung, and C. M. Lieber, Science 292, 702 (2001).

    17 X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R. O. Jones, and Y. Ando, Phys. Rev. Lett. 92, 125502 (2004).

    18 M. S. Dresselhaus, Nature 358, 195 (1992).

    19 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical~Properties~of~Carbon~Nanotubes (Imperial College Press, Lodon, 1998)

    20 J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett. 68, 631 (1992).

    21 R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).

    22 R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 46, 1804 (1992).

    23 N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).

    24 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).

    25 M. F. Lin, D. S. Chuu, and K. W.-K Shung, Phys. Rev. B 56, 1430 (1997).

    26 H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 62, 1255 (1993).

    27 H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 64, 260 (1995).

    28 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 50, 14698 (1994).

    29 F. L. Shyu, C. P. Chang, R. B. Chen, and M. F. Lin, J. Phys. Soc. Jpn. 72, 454 (2003).

    30 F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu, and M. F. Lin, Phys. Rev. B 67, 045405 (2003).

    31 A. Bachtold, C. Strunk, J. P. Salvetat, J. M. Bonard, L. Forro, T. Nussbaumer, and C. Schonenberger, Nature 397, 673 (1999).

    32 S. Roache and R. Saito, Phys. Rev. Lett. 87, 246803 (2001).

    33 U. C. Coskun, T. C. Wei, S. Vishveshwara, P. M. Goldart, and A. Bezryadin, Science 304, 1132 (2004).

    34 Y. H. Kim and K. J. Chang, Phys. Rev. B 64, 153404 (2001).

    35 X. Zhou, H. Chen, and O. Y. Zhong, J. Phys. Cond. Matt. 13, L635 (2001).

    36 J. O'Keeffe, C. Wei, and K. Cho, Appl. Phys. Lett. 80, 676 (2002).

    37 O. V. Kibis, D. G. W. Parfitt, and M. E. Portnoi, Phys. Rev. B 71, 035411 (2005).

    38 L. Yan, V. R. Slava and R. Umberto, Nano leter 3, 183 (2003).

    39 C. W. Chen, M. H. Lee, and S. J. Clark, Nanotech. 15, 1837 (2004).

    40 S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature (London) 393, 49 (1998).

    41 R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998).

    42 H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 62, 2470 (1993).

    43 H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 64, 4382 (1995).

    44 M. F. Lin and K. W.-K. Shung, Phys. Rev. B 52, 8423 (1995).

    45 J. Heremans, C. H. Olk, and D. T. Morelli, Phys. Rev. B 49, 15122 (1994).

    46 S. Bandow, J. Appl. Phys. 80, 1020 (1996).

    47 S. Glenisa, V. Likodimosb, N. Guskosa, and C. L. Lin, J. Magn. Magn. Mater. 272-276, 1660 (2004).

    48 L. Langer, V. Bayot, E. Grivei, and J.-P. Issi, Phys. Rev. Lett. 76, 479 (1996).

    49 C. Naud, G. Faini, D. Mailly, and H. Pascard, C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron. 327, 945 (1999).

    50 M. F. Lin, R. B. Chen, and F. L. Shyu, Solid State Commun. 107, 227 (1998).

    51 D. H. Oh, J. M. Park, and K. S. Kim, Phys. Rev. B 62, 1600 (2000).

    52 S. A. Bovin, L. F. Chibotaru, and A. Ceulemans, J. Mol. Cata. A: Chem. 166, 47 (2001).

    53 V. Meunier, Ph. Lambin, and A. A. Lucas, Phys. Rev. B 57, 14886 (1998).

    54 A. Ceulemans, L. F. Chibotaru, and S. A. Bovin, J. Chem. Phys. 112, 4271 (2000).

    55 A. Latge, C. G. Rocha, L. A. L. Wanderley, M. Pacheco, P. Orellana, and Z. Barticevic, Phys. Rev. B 67, 155413 (2003).

    56 M. F. Lin and D. S. Chuu, J. Phy. Soc. Jpn. 67, 259 (1998).

    57 M. F. Lin, and D. S. Chuu, Phys. Rev. B 57, 6731 (1998).

    58 R. C. Haddon, Nature 388, 31 (1997).

    59 M. F. Lin, J. phys. Soc. Jpn. 67, 1094 (1998).

    60 A. A. Odintsov, W. Smit, and H. Yoshioka, Europhys. Lett. 45, 598 (1999).

    61 S. Latil, S. Roche, and A. Rubio, Phys. Rev. B. 67, 165420 (2003).

    62 S. Sasaki, Phys. Rev. B 65, 155429 (2002).

    63 M. F. Lin, J. Phys. Soc. Jpn. 68, 1102 (1999).

    64 M. F. Lin, J. Phys. Soc. Jpn. 69, 3429 (2000).

    65 M. F. Lin, Phys. Rev. B 58, 3629 (1998).

    66 M. F. Lin, J. Phys. Soc. Jpn. 62, 2218 (1998).

    67 M. F. Lin, J. Phys. Soc. Jpn. 68, 3585 (1999).

    68 M. F. Lin, J. Phys. Soc. Jpn. 68, 3744 (1999).

    69 H. R. Shea, R. Martel, and Ph. Avouris, Phys. Rev. Lett. 84, 4441 (2000).

    70 M. Ahlskog, E. Seynaeve, R. J. M. Vullers, C. Van Haesendonck, A. Fonseca, K. Hernadi, J. B. Nagy, Chem. Phys. Lett. 300, 202 (1999).

    71 M. Sano, A. Kamino, J. Okamura, S. Shinkai, Science 293, 1299 (2001).

    72 R. Martel, H. R. Shea, and Ph. Avouris, Nature (London) 398, 299 (1999).

    73 R. Martel, H. R. Shea, and Ph. Avouris, J. Phys. Chem. B 103, 7551 (1999).

    74 C. G. Rocha, M. Pacheco, Z. Barticevic, and A. Latge, Phys. Rev. B 70, 233402 (2004).

    75 H. F. Cheung, Y. Gefen, E. K. Riedel, and W. H. Shih, Phys. Rev. B 37, 6050 (1988).

    76 L. P. Levy, G. Dolan, J. Dunsmuir, and H. Bouchiat, Phys. Rev. Lett. 64, 2074 (1990).

    77 D. Mailly, C. Chapelier, and A. Benoit, Phys. Rev. Lett. 70, 2020 (1993).

    下載圖示 校內:立即公開
    校外:2005-08-01公開
    QR CODE