簡易檢索 / 詳目顯示

研究生: 徐承緯
Hsu, Cheng-Wei
論文名稱: 熱危害對營建作業安全性之影響評估
Impact Assessments of Thermal Hazards on Construction Operation Safety
指導教授: 潘南飛
Pan, Nang-Fei
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 96
中文關鍵詞: 綜合溫度熱指數熱傷害作業安全模糊推論模糊集合模糊矩陣
外文關鍵詞: Wet-Bulb Globe Temperature (WBGT), Heat Injuries, Work Safety, Fuzzy Inference, Fuzzy Matrix
相關次數: 點閱:39下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣營造業職業災害目前居於所有行業之首,營造業災害千人率更是比平均值高3.6倍,隨著全球氣候變遷,天氣暖化現象越來越嚴重,氣溫逐年持續上升,對於長期需要待在戶外工作的營造業從事人員來說長時間暴露在高溫環境下,發生熱疾病、熱傷害的機率大幅提升,甚至於需要面對熱壓力和健康風險。本研究聚焦於綜合溫度熱指數對施工作業的影響,旨在提升營造業工作環境的安全水準。
    為了更全面評估工作環境的安全性,本研究將樓層高度、風力、綜合溫度熱指數等語意變數進行考慮,利用問卷方式採納各領域專家之建議,得出if-then法則針對危害頻率、危害風險以及安全等級之關係,評估出綜合溫度熱指數對於營造作業的安全等級所產生的影響。同時,根據綜合溫度熱指數與安全等級關係對於出工可能性的if-then法則,本研究也有能力推估出工可能性的大小,為改善工作環境提供充分的參考依據,降低職業災害的發生風險。

    The construction industry in Taiwan currently ranks highest in occupational accidents among all industries, with a per thousand workers accident rate 3.6 times higher than the average. With the escalating phenomenon of global climate change and warming weather conditions, the annual temperature continues to rise, posing significant risks to construction workers who are required to work outdoors for extended periods. The prolonged exposure to high temperatures increases the probability of heat-related illnesses and injuries, leading to heat stress and health risks. This study focuses on the impact of Wet-Bulb Globe Temperature (WBGT) on construction operations, aiming to enhance the safety standards of the construction industry's work environment.
    To comprehensively assess the safety of the work environment, this study considers semantic variables such as floor height, wind speed, and WBGT. Through questionnaire surveys incorporating suggestions from various domain experts, if-then rules are derived to analyze the relationships between hazard frequency, hazard risk, and safety levels. The study evaluates the influence of WBGT on the safety levels of construction operations. Furthermore, based on the relationship between WBGT and safety levels, if-then rules are applied to estimate the likelihood of workability, providing sufficient reference for improving the work environment and reducing the risk of occupational accidents.

    摘要I AbstractII 致謝VI 目錄VII 圖目錄X 表目錄XI 第一章 緒論1 1.1研究背景與動機1 1.2研究目的2 1.3研究流程3 1.4研究架構4 第二章 文獻回顧5 2.1綜合溫度熱指數5 2.2風險評估相關文獻7 2.3模糊理論應用在風險評估相關文獻9 2.4模糊理論與安全等級相關文獻10 2.5模糊運算11 2.5.1 模糊集合(Fuzzy Sets)11 2.5.2 隸屬函數(Membership Function)11 2.5.3 模糊集合演算13 2.5.4 模糊關係演算15 2.5.5 模糊推論17 第三章 研究方法20 3.1模糊語意變數解釋與建立隸屬函數21 3.1.1樓層高度21 3.1.2風力23 3.1.3綜合溫度熱指數(Wet-Bulb Globe Temperature ,WBGT)26 3.1.4危害頻率(Hazard Frequency)28 3.1.5危害風險(Hazard Risk)30 3.1.6安全等級33 3.1.7出工可能性35 3.2 Mamdani模糊推論系統37 第四章 模式建立38 4.1建立模糊關係38 4.2發生機率39 4.3安全分級百分比之期望值40 4.4 出工可行性40 第五章 案例分析與探討42 5.1 安全分級百分比期望值46 5.1.1綜合溫度熱指數為警戒下危害頻率與危害風險的模糊關係47 5.1.2綜合溫度熱指數為警戒下危害風險與安全等級的模糊關係49 5.1.3綜合溫度熱指數為警戒下危害頻率與安全等級的模糊關係52 5.2 特定綜合溫度熱指數值之安全分級百分比54 5.3 Mamdani模糊推論出工可能性56 5.3.1 安全等級與綜合溫度熱指數之間的相對關係對於出工可能性的if-then法則57 5.3.2 MATLAB系統操作59 第六章 結論與建議63 6.1 研究結論63 6.2研究建議64 參考文獻66 一、英文文獻66 二、中文文獻68 附錄-問卷70

    1.Akintola S Akintoye, Malcolm J MacLeod, “Risk analysis and management in construction”, International Journal of Project Management (15) pp.31-38,1997.
    2.A. Akgun, E.A. Sezer, H.A. Nefeslioglu, C. Gokceoglu, B. Pradhan,“ An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm”, Computers & Geosciences(38:1) pp.23-34,2012.
    3.Adam Stanisław Markowski, Dorota Siuta ,“Fuzzy logic approach to calculation of thermal hazard distances in process industries”, Process Safety and Environmental Protection(92)pp.338-345,2014.
    4.Bandemer, Hans, and Siegfried Gottwald,“Fuzzy sets, fuzzy logic, fuzzy methods”, Chichester: Wiley, 1995.
    5.Burney, S.M, “Risk Analysis and Management using Fuzzy Logic for Software Projects”, 2020.
    6.Babak A. Samani, & Farzad Shahbodaghlou, “A Fuzzy Systematic Approach to Construction Risk Analysis”, Journal of Risk Analysis and Crisis Response, (2:4), 2021.
    7.G. Emre Gürcanli, Ugur Müngen, “An occupational safety risk analysis method at construction sites using fuzzy sets”, International Journal of Industrial Ergonomics (39:2) pp.371-387,2009.
    8.Hitoshi Furuta, Naruhito Shiraishi, “Fuzzy importance in fault tree analysis”, Fuzzy Sets and Systems (12:3) pp.205-213, 1984.
    9.Jannadi, M. Osama, and Sadi Assaf, “Safety assessment in the built environment of Saudi Arabia”, Safety Science (29.1) pp.15-24,1998.
    10.J. H. M. Tah , V. Carr,“ A proposal for construction project risk assessment using fuzzy logic”,Construction Management and Economics(18:4)pp.491-500,2000.
    11.Jannadi, Osama Ahmed, Salman Almishari, “Risk assessment in construction”, Journal of construction engineering and management (129.5) pp.492-500,2003.
    12.Keramitsoglou, I., Kiranoudis, C.T., Maiheu, B. et al ,“Heat wave hazard classification and risk assessment using artificial intelligence fuzzy logic”, Environmental Monitoring and Assessment(185),pp8239–8258 ,2013.
    13.Nang-Fei Pan, “Assessment of productivity and duration of highway construction activities subject to impact of rain”, Expert Systems with Applications(28:2) pp.313-326,2005.
    14.Ophir Rozenfeld, Rafael Sacks, Yehiel Rosenfeld, Hadassa Baum,“Construction job safety analysis”,Safety science(48:4) pp.491-498,2010.
    15.Ossama Y. Abul-Haggag, Walied Barakat, “Application of Fuzzy Logic for Risk Assessment using Risk Matrix”, International Journal of Emerging Technology and Advanced Engineering (3:1),2013.
    16.P.K. Marhavilas, D. Koulouriotis, V. Gemeni, “Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000–2009”, Journal of Loss Prevention in the Process Industries (24:5) pp.477-523,2011.
    17.Qingsheng Wang, William Rogers, M. Mannan, “Thermal risk assessment and rankings for reaction hazards in process safety”, Journal of Thermal Analysis and Calorimetry (98:1) pp.225-233,2009.
    18.U.S Department of Labor, “Job Hazard Analysis”, OSHA 3071,2002(Revised).
    19.W.G. de Ru, J.H.P. Eloff, “Risk analysis modelling with the use of fuzzy logic”, Computers & Security (15:3) pp.239-248,1996.
    20.Shailendra Bajpai , Anish Sachdeva , J.P. Gupta ,“Security risk assessment: Applying the concepts of fuzzy logic”, Journal of Hazardous Materials(173),pp258-264,2010.
    21.Siddhappa, Katti, Konnur, Basavraj, Landage, Amarsinh, “Risk analysis of construction projects using fuzzy logic”, International Journal of Engineering Research Volume 5 pp.274-276,2016.
    22.王慶煌,「營建工期決策模式之研究」,行政院國家科學委員會專題研究計畫,2000。
    23.王文俊,「認識Fuzzy」,全華科技圖書股份有限公司,2005。
    24.王暘杰,「勞工戶外作業熱危害之研究與建議」,國立台灣大學生物產業機電工程研究所碩士論文,2011。
    25.沈子淵,「以模糊理論評估路工作業工率」,國立成功大學土木工程研究所碩士論文,2010。
    26.林永承,「應用熱指數及綜合溫度熱指數評估戶外操課熱危害風險」,長榮大學安全衛生科學學院職業安全與衛生學系碩士在職專班碩士論文,2022。
    27.金德,「探討營造作業如何落實危害辨識及風險評估」,工業安全衛生,第383期,頁53-66,2021。
    28.厚生労働省,「職場における熱中症の予防について」,2009。 Retrieved from-https://www.mhlw.go.jp/bunya/roudoukijun/anzeneisei33/.
    29.孫宗瀛、楊英魁,「Fuzzy控制理論、實作與應用」,全華科技圖書股份有限公司,2005。
    30.張順億,「估計降雨對營建作業安全之影響」,國立成功大學土木工程研究所碩士論文,2014。
    31.陳振菶、黃彬芳、陳旺儀,「國內高氣溫戶外工作者熱危害預防及檢查作法研 究」,勞動部勞動及職業安全衛生研究所,2013。
    32.陳志勇、龍世俊,「利用大數據分析建置我國戶外高氣溫環境熱壓力與體力負荷模式」勞動部勞動及職業安全衛生研究所,2019。
    33.傅全隆,「部隊戶外操練熱危害預防指標探討」,長榮大學安全衛生科學學院職業安全與衛生學系碩士在職專班碩士論文,2022。
    34.勞動部職業安全衛生署,「高氣溫戶外作業勞工熱危害預防指引」,2023。
    35.勞動部職業安全衛生署,高氣溫戶外作業熱危害預防行動資訊網。https://hiosha.osha.gov.tw/content/info/heat1.aspx
    36.黃清賢,「危害分析與風險評估」,三民書局,台北,2001。
    37.潘儀聰,「危害辨識、風險評估及控制」,臺灣海洋大學。

    無法下載圖示 校內:2029-07-09公開
    校外:2029-07-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE