簡易檢索 / 詳目顯示

研究生: 蔡承洋
Tsai, Cheng-Yang
論文名稱: 應用於快速基因放大之聚多巴胺奈米粒子製備及其表面修飾之優化
Synthesis and surface optimization of polydopamine nanoparticles for rapid gene amplification
指導教授: 謝達斌
Shieh, Dar-Bin
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 69
中文關鍵詞: 聚合酶連鎖反應光熱轉換奈米粒子光分子PCR聚多巴胺奈米粒子DNA吸附蛋白質電暈
外文關鍵詞: Polymerase chain reaction, photothermal nanomaterial, photonic PCR, polydopamine, DNA adsorption, protein corona
相關次數: 點閱:127下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚合酶連鎖反應(PCR)是一種擴增特定 DNA 片段從而檢測和定量特定基因存在的方法,並且自從發明以來便被大量運用在生物醫學領域中。傳統PCR中的熱循環過程主要依靠熱電冷卻器來加熱/冷卻試管內的樣品。然而此方式需要通過許多熱阻達到加熱樣品的目的,因此大幅降低了電功效率以及需要較長的反應時間。近年來提出了一種新穎的PCR加熱機制: 藉由在PCR試劑中加入具光熱轉換性質的奈米材料例如金以及氧化鐵奈米粒子,並藉由光激發來實現內部加熱。此方式除了加速反應時間外也能有效的節省機器的大小。然而金奈米粒子的熱穩定性備受考量以及氧化鐵奈米粒子的製備複雜性使兩者在其進一步應用中受到限制。在此,我們開發了具多巴胺奈米粒子(PDA NPs)作為光分子PCR加熱試劑的替代成分。PDA NPs的磷苯二酚基團使其螯合PCR反應緩衝液中的鎂等多價金屬離子藉此影響反應過程。此外因螯合誘導的DNA吸附在經過PCR後更嚴重的引發聚集。為了克服這些問題,我們發現加入牛血清白蛋白(BSA)能夠在奈米材料外形成蛋白質電暈並阻止金屬螯合以及DNA吸附。此研究不僅提出PDA NPs如何與光分子PCR中的成份相互作用提供了詳細的機制討論,同時做為第一個有機奈米材料應用於光分子PCR啟發了未來其他有機材料的光分子PCR的應用。

    Polymerase chain reaction aimed to amplify specific DNA fragments for specific genes’ quantitative detection. Traditional PCR mostly rely on thermoelectric heating/cooling mechanism from outside PCR tubes which compromises power and time efficiency. A novel direct photothermal modulation has revolutionized PCR in accelerating sample-to-data process by “internal heating” using nanomaterials such as Au and Fe3O4 particles. However, the stability and preparation complexity render significant limitations in further applications. Here, we developed a one-pot synthesis of polydopamine (PDA) photothermal nanoparticles for next generation photonic PCR. PDA has multivalent metal ion ligand in catechol group that chelates Mg2+ in PCR reaction buffers thus inhibit the reaction. Further, PDA could absorb DNA and induced serious aggregation in PCR cycles. We discovered that bovine serum albumin (BSA) was able to form protein corona and effectively blocked metal chelation as well as DNA absorption and perform efficient photonic PCR. Detail mechanism was explored including the interaction of PDA with PCR reagent and lasing. This study enlightened the use of organic nanomaterials in accelerated photonic PCR for point-of-care quantitative diagnostics.

    中文摘要 I English abstract II Acknowledgement III List of figures VI Abbreviations VIII 1. Introduction 2 1.1 Polymerase chain reaction 2 1.2 Ultrafast photonic PCR 3 1.3 Photonic PCR based on Au nanomaterials 5 1.4 Photonic PCR based on Fe3O4 nanoclusters 8 1.5 Polydopamine and its potential to serve as nanoheaters in photonic PCR 9 2. Materials and methods 14 2.1 Synthesis of PDA NPs 14 2.2 Characterization of the synthesized NPs 14 2.3 Photothermal response of the synthesized NPs 15 2.4 Surface modification of the PDA NPs 16 2.5 Cell culture 17 2.6 PCR analysis 17 3. Results 20 3.1 Characterization of PDA NPs 20 3.2 The photothermal conversion and the PCR results using PDA NPs 20 3.3 Surface modifications of the PDA NPs and the PCR results 21 3.4 Optimization of PDA NP-BSA system for photonic PCR applications 23 3.5 TEM observation of the PDA -BSA system affected by PCR cycling 25 3.6 Fluorescence intensity alterations affected by DNA amplifications by photonic PCR using the Fe3O4 NPs or the PDA-BSA NPs 28 4. Discussion 30 5. Conclusion 44 References 46 Figures 53

    1. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., Erlich, H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 1986;51:263–273.
    2. Yang, S., Rothman, R. E. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. The Lancet. Infectious diseases. 2004;4(6):337–348.
    3. Decorte, R., Cassiman, J. J. Forensic medicine and the polymerase chain reaction technique. Journal of medical genetics. 1993;30(8):625–633.
    4. Alvarez, A. J., Buttner, M. P., Stetzenbach, L. D. PCR for bioaerosol monitoring: sensitivity and environmental interference. Appl Environ Microbiol. 1995;61(10):3639-3644.
    5. Tahamtan, A., Ardebili, A. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev Mol Diagn. 2020;20(5):453-454.
    6. Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M. L., Mulders, D. G., Haagmans, B. L., van der Veer, B., van den Brink, S., Wijsman, L., Goderski, G., Romette, J. L., Ellis, J., Zambon, M., Peiris, M., Goossens, H., Reusken, C., Koopmans, M. P., Drosten, C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045.
    7. Chien, A., Edgar, D. B., Trela, J. M. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol. 1976;127(3):1550-1557.
    8. Wittwer, C.T., Ririe, K.M., Andrew, R.V., David, D.A., Gundry, R.A., Balis, U. J. The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques. 1997;22(1):176-181.
    9. Roche, P. J., Beitel, L. K., Khan, R., Lumbroso, R., Najih, M., Cheung, M. C., Thiemann, J., Veerasubramanian, V., Trifiro, M., Chodavarapu, V. P., Kirk, A. G. Demonstration of a plasmonic thermocycler for the amplification of human androgen receptor. DNA. Analyst. 2012;137(19):4475-4481.
    10. Roche, P. J., Najih, M., Lee, S. S., Beitel, L. K., Carnevale, M. L., Paliouras, M., Kirk, A. G., Trifiro, M.A. Real time plasmonic qPCR: how fast is ultra-fast? 30 cycles in 54 seconds. Analyst. 2017;142(10):1746-1755.
    11. Lee, J. H., Cheglakov, Z., Yi, J., Cronin, T. M., Gibson, K.J., Tian, B., Weizmann, Y. Plasmonic Photothermal Gold Bipyramid Nanoreactors for Ultrafast Real-Time Bioassays. J Am Chem Soc. 2017;139(24):8054-8057.
    12. Son, J. H., Cho, B., Hong, S., Lee, S. H., Hoxha, O., Haack, A. J., Lee, L. P. Ultrafast photonic PCR. Light Sci Appl. 2015;e280:4.
    13. Li, T. J., Chang, C. M., Chang, P. Y., Chuang, Y. C., Huang, C. C., Su, W. C., Shieh, D. B. Handheld energy-efficient magneto-optical real-time quantitative PCR device for target DNA enrichment and quantification. NPG Asia Materials. 2016;8(6):e277
    14. Jiang, K., Smith, D. A., Pinchuk, A. Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles. J. Phys. Chem. C. 2013;117:27073–27080
    15. You, M., Li, Z., Feng, S., Gao, B., Yao, C., Hu, J., Xu, F. Ultrafast Photonic PCR Based on Photothermal Nanomaterials. Trends in biotechnology. 2020;38(6):637–649.
    16. González-Rubio, G., Guerrero-Martínez, A., Liz-Marzán, L. M. Reshaping, Fragmentation, and Assembly of Gold Nanoparticles Assisted by Pulse Lasers. Accounts of chemical research. 2016;49(4):678–686.
    17. González-Rubio, G., Díaz-Núñez, P., Rivera, A., Prada, A., Tardajos, G., González-Izquierdo, J., Bañares, L., Llombart, P., Macdowell, L. G., Alcolea Palafox, M., Liz-Marzán, L. M., Peña-Rodríguez, O., Guerrero-Martínez, A. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science. 2017;358(6363):640-644.
    18. Waite, J. H., Tanzer, M. L. Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science. 1981;212(4498):1038-1040.
    19. Lee, H., Dellatore, S. M., Miller, W. M., Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426-430.
    20. Batul, R., Tamanna, T., Khaliq, A., Yu, A. Recent progress in the biomedical applications of polydopamine nanostructures. Biomater Sci. 2017;5(7):1204-1229.
    21. Hong, S., Na, Y. S., Choi, S., Song, I. T., Kim, W. Y., Lee, H. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv. Funct. Mater. 2012;22(22):4711-4717.
    22. Poinard, B., Neo, S., Yeo, E., Heng, H., Neoh, K. G., Kah, J. Polydopamine Nanoparticles Enhance Drug Release for Combined Photodynamic and Photothermal Therapy. ACS applied materials & interfaces. 2018;10(25):21125-21136.
    23. Cui, J., Wang, Y., Postma, A., Hao, J., Hosta-Rigau, L., Caruso, F. Monodisperse Polymer Capsules: Tailoring Size, Shell Thickness, and Hydrophobic Cargo Loading via Emulsion Templating. Adv. Funct. Mater. 2010;20:1625−1631.
    24. Li, Z., Hu, Y., Jiang, T., Howard, K. A., Li, Y., Fan, X., Sun, Y., Besenbacher, F., Yu, M. Human-serum-albumin-coated prussian blue nanoparticles as ph-/thermotriggered drugdelivery vehicles for cancer thermochemotherapy. Part. Part. Syst. Charact. 2016;33(1):53–62.
    25. Ko, E., Yang, K., Shin, J., Cho, S. W. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromolecules. 2013;14(9):3202–3213.
    26. Ahmad, T., Byun, H., Lee, J., Madhurakat Perikamana, S. K., Shin, Y. M., Kim, E. M., Shin, H. Stem cell spheroids incorporating fibers coated with adenosine and polydopamine as a modular building blocks for bone tissue engineering. Biomaterials. 2020;230:119652.
    27. Zhang, Y., Yin, X., Yu, B., Wang, X., Guo, Q., Yang, J. Recyclable Polydopamine-Functionalized Sponge for High-Efficiency Clean Water Generation with Dual-Purpose Solar Evaporation and Contaminant Adsorption. ACS Appl Mater Interfaces. 2019;11(35):32559-32568.
    28. Meng, Y., Liu, P., Zhou, W., Ding, J., Liu, J. Bioorthogonal DNA Adsorption on Polydopamine Nanoparticles Mediated by Metal Coordination for Highly Robust Sensing in Serum and Living Cells. ACS Nano. 2018;12(9):9070-9080.
    29. Liu, Q., Yu, B., Ye, W., Zhou, F. Highly selective uptake and release of charged molecules by pH-responsive polydopamine microcapsules. Macromol Biosci. 2011;11(9):1227-1234.
    30. Zandieh M., Liu J. Transition Metal-Mediated DNA Adsorption on Polydopamine Nanoparticles. Langmuir. 2020;36(12):3260-3267.
    31. Holten-Andersen, N., Harrington, M. J., Birkedal, H., Lee, B. P., Messersmith, P. B., Lee, K. Y., Waite, J. H. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc Natl Acad Sci U S A. 2011;108(7):2651-2655.
    32. Zhang, Q., Ye, Z., Wang, S. T., Yin, J. Facile one-pot synthesis of PEGylated monodisperse mesoporous silica nanoparticles with controllable particle sizes. Chin. Chem. Lett. 2014;25(02):257-260
    33. Liu, L., Guo, Z., Huang, Z., Zhuang, J., Yang, W. Size-selective separation of DNA fragments by using lysine-functionalized silica particles. Sci Rep. 2016;6:22029.
    34. Ho, Y. T., Poinard, B., Yeo, E. L., Kah, J. C. An instantaneous colorimetric protein assay based on spontaneous formation of a protein corona on gold nanoparticles. Analyst. 2015;140(4):1026-1036.
    35. Pino, P. d., Pelaz, B., Zhang, Q., Maffre, P., Nienhaus, G. U., Parak, W. J. Protein corona formation around nanoparticles - from the past to the future. Mater. Horiz. 2014;1(3):301– 313.
    36. Zhong, Z., Yao, X., Gao, X., Jia, L. Polydopamine-immobilized polypropylene microfuge tube as a pH-responsive platform for capture/release of DNA from foodborne pathogens. Anal Biochem. 2017;534:14-18.

    下載圖示
    2025-12-28公開
    QR CODE