| 研究生: |
陳肇奇 Chen, Chao-Chi |
|---|---|
| 論文名稱: |
調諧液體晃盪阻尼器之效能評估與振動台試驗 Shaking Table Test and Performance Evaluation of Tuned Liquid Sloshing Damper |
| 指導教授: |
朱世禹
CHU, SHIH-YU 方中 FANG, CHUNG |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 調諧液體晃盪阻尼器 、滾軸單擺系統 、振動台實驗 、等效線性模型 、減振效能評估 |
| 外文關鍵詞: | TLSD, Rolling Pendulum System, Shaking Table Test, Equivalent Linear Model, Vibration Mitigation Performance |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著高樓建築日漸增多,結構控制技術的應用也變得更加重要。調諧液體晃盪阻尼器(Tuned Liquid Sloshing Damper, TLSD)因其構造簡單與成本低廉,成為近年結構控制領域中備受關注的被動控制裝置。本文以滾軸單擺系統(Rolling Pendulum System, RPS)為主結構,進行TLSD之振動控制效能研究。透過理論模擬與振動台實驗兩方面進行驗證,模擬部分TLSD以等值線性力學模型預測系統反應,而RPS透過單自由度摩擦系統進行模擬。實驗結果顯示,使用庫倫摩擦模型,對RPS進行模擬需將歷時分為強動段與餘動段進行摩擦係數之識別,方可準確預測RPS的行為。TLSD等值線性力學模型只能模擬TLSD之大致趨勢,RPS裝設TLSD之模擬同樣有誤差,這是TLSD誤差所導致。實驗則考慮不同擋板配置、自然振動頻率之TLSD對減振效果之影響。實驗結果顯示,TLSD具顯著減振能力,在正弦波下,水高4.8公分配置,也就是頻率精準調諧主結構頻率時表現最佳,能有效降低主結構之相對位移與加速度。在地震外力下,水高4.8公分以及水高6.5公分之配置減振效果最佳且兩者十分接近。此外,模擬與實驗整體趨勢一致,證實所建模擬工具具有設計參考價值。本文研究成果可供未來高層建築進行TLSD設計與應用之參考。也可在基於本研究之等值線性模型在未來進行即時複合試驗的開發。
With the increasing number of high-rise buildings, the application of structural control technologies has become increasingly important. Tuned Liquid Sloshing Dampers (TLSDs), due to their simple construction and low cost, have in recent years attracted significant attention as passive control devices in the field of structural engineering. This study investigates the vibration control effectiveness of TLSDs when applied to a Rolling Pendulum System (RPS) as the primary structure. Validation is conducted through both theoretical simulations and shaking table tests. In the simulations, the TLSD is modeled using an equivalent linear mechanical model to predict system responses, while the RPS is simulated through a single-degree-of-freedom friction model. The experimental results indicate that, when using the Coulomb friction model, accurate prediction of the RPS behavior requires dividing the input time history into a strong-motion phase and a residual-motion phase for identifying the friction coefficients. The equivalent linear model of the TLSD can only capture the overall trend of its response, and when the RPS is equipped with the TLSD, simulation errors are also observed, which are attributed to the limitations of the TLSD model. The experiments further consider the influence of different screen configurations and natural frequencies of the TLSD on vibration mitigation performance. The results show that TLSDs provide significant vibration reduction. Under sinusoidal excitation, the optimal performance is achieved with a water depth of 4.8 cm, where the TLSD frequency is precisely tuned to the structural frequency, effectively reducing the relative displacement and acceleration of the primary structure. Under seismic excitation, both the 4.8 cm and 6.5 cm water depth configurations yield the best mitigation performance, with results being very close to each other. Moreover, the overall trends of simulation and experimental results are consistent, confirming that the developed modeling tools have practical reference value for design. The findings of this study can serve as a reference for the design and application of TLSDs in high-rise buildings in the future, and the equivalent linear model developed herein can also be used as a basis for future development of real-time hybrid simulations.
[1] Yozo Fujino, Limin Sun, Benito M. Pacheco, Piyawat Chaiseri, (1992). “Tuned liquid damper (TLD) for suppressing horizontal motion of structures” Journal of Engineering Mechanics, Vol. 118.
[2] Sun, L. M., & Fujino, Y. (1994). A semi-analytical model for tuned liquid damper (TLD) with wave breaking. Journal of Fluids and Structures, 8(5), 471–488.
[3] Chang, C. C., & Qu, W. L. (1998). Unified dynamic absorber design formulas for wind-induced vibration control of tall buildings. The Structural Design of Tall Buildings, 7(2), 147–166.
[4] M.J. Tait, A.A. El Damatty, N. Isyumov, M.R. Siddique ,(2005).“Numerical flow models to simulate tuned liquid dampers (TLD) with slat screens” Journal of Fluids and Structures 20, 1007–1023.
[5] Ross, A. S., El Damatty, A. A., & El Ansary, A. M. (2015). Application of tuned liquid dampers in controlling the torsional vibration of high rise buildings. Wind and Structures, 21(5), 537–564.
[6] Hamelin, J. A., Love, J. S., Tait, M. J., & Wilson, J. C. (2013). Tuned liquid dampers with a Keulegan–Carpenter number-dependent screen drag coefficient. Journal of Fluids and Structures, 43, 271–286.
[7] Love, J. S., & Haskett, T. C. (2018). Nonlinear modelling of tuned sloshing dampers with large internal obstructions: Damping and frequency effects. Journal of Fluids and Structures, 79, 1–13.
[8] Warnitchai, P., & Pinkaew, T. (1998). Modelling of liquid sloshing in rectangular tanks with flow-dampening devices. Engineering Structures, 20(7), 593–600.
[9] Miles, J. W. (1967). Surface-wave damping in closed basins. Proceedings of the Royal Society A, 297(1451), 459–475.
[10] Ali Ashasi-Sorkhabi, Hadi Malekghasemi, Amirreza Ghaemmaghami,Oya Mercan, (2017). “Experimental investigations of tuned liquid damper-structure Interactions in resonance considering multiple parameters” Journal of Sound and Vibration, Vol 388, 141-153.
[11] Jin-Ting Wang, Yao Gui, Fei Zhu, Feng Jin, Meng-Xia Zhou, (2016). “Real-time hybrid simulation of multi-story structures installed with tuned liquid damper” Struct. Control Health Monit., 23:1015–1031.
[12] 許翊琳,「調諧液體晃盪阻尼器數值模擬與振動台試驗」,國立成功大學土木工程研究所,碩士論文(2024)
[13] 柯達宇,「調諧晃液阻尼器之減振可行性研究」,國立臺灣科技大學營建工程系,碩士論文(2024)。
[14] 許哲崙,「槓桿式勁度可控質量阻尼器之效能評估與實驗驗證」,國立成功大學土木工程研究所,碩士論文(2016)