| 研究生: |
蔡博雅 Tsai, Bo-Ya |
|---|---|
| 論文名稱: |
雙氧高能物質改質奈米銀漿料於強化銅對銅接合之研究 Formulation of Silver Nanopastes with Energetic Peroxides for Enhanced Cu-to-Cu Bonding |
| 指導教授: |
郭昌恕
Kuo, Chang-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 奈米銀顆粒 、金屬奈米漿料 、高能物質 、過氧化氫異丙苯 、銅對銅接合 |
| 外文關鍵詞: | Ag Nanoparticle, Metallic Nanopaste, Energetics, Cumene Hydroperoxide, Cu-to-Cu Bonding |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來奈米銀漿料被廣泛的應用在低溫銅對銅接合。奈米顆粒相較於塊狀體,具有較低的熔融溫度,使得奈米顆粒的懸浮液能夠在一般環境下進行轉移及圖案化。在本研究中,利用高能物質過氧化氫異丙苯改質商用的奈米銀漿料來進行銅對銅的接合實驗。高能物質在熱裂解時會放出額外的焦耳熱,可定點加熱周圍的奈米顆粒,從XPS的化學組合分析中可知,CHP可加速清除原本附在奈米銀顆粒表面的保護基,最重要的是,在剪切強度測試中,以200度C的熱壓條件下,銅對銅的接合強度可從8.8MPa大幅上升至14.6MPa。另外也利用SEM, XRD以及掃描式熱顯微鏡(SThM)來分析微結構。電性的部分利用凱文結構來量測接觸電阻,從結果可以發現不管有沒有添加CHP,其接觸電阻都維持一樣。 從這些實驗的結果可知,以高能物質CHP改質奈米銀漿料,可以在200°C的熱壓環境下提升銅對銅的接合強度,且仍保持其電性值。
Silver nanopastes have recently demonstrated their promising uses in the low-temperature copper-to-copper (Cu-to-Cu) bonding. Suspension solutions of these nanoparticles allows the ambient process in the material transferring and patterning, while the nanoscales particles exhibit the lower fusion temperature as compared with the bulk counterpart. In this research, an energetic reagent, cumene hydroperoxide (CHP), is incorporated in the formulation of commercial silver nanopastes for the Cu-to-Cu bonding. The thermal decomposition of CHP provides the additional joule heat that is in-situ released among silver nanoparticles. XPS composition analysis indicates that the presence of CHP accelerates the removal of surfactants originally surrounding the silver nanoparticles. More importantly, the shear strength measurements reveal the remarkable enhancement in the Cu-to-Cu bonding from 8.8 MPa to 14.6 MPa under the hot pressing at 200oC. Microstructures were also examined and analyzed by SEM, XRD, and the scanning thermal microscopy (SThM). Electric properties based on the Kelvin structure reveal the contact resistance of the Cu-to-Cu bonding remains the same between samples with and without CHP addition. These results concluded the formulation of silver nanopastes with the addition of energetic CHP significantly enhanced the Cu-to-Cu bonding strength at the hot pressing temperature of 200oC with no loss in the electric performance.
1 Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chemical reviews 105, 1025-1102 (2005).
2 Daniel, M.-C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews 104, 293-346 (2004).
3 Conchman, P. R. & Jesser, W. A. Thermodynamic theory of size dependence of melt temperature in metals. Nature 269 481-483 (1977).
4 Schuller, J. A. ,Plasmonics for extreme light concentration and manipulation. Nature materials 9, 193-204 (2010).
5 Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature photonics 4, 83-91 (2010).
6 Lu, D. & Wong, C. Materials for advanced packaging. Vol. 181 (Springer, 2009).
7 Yan, J. Effect of PVP on the low temperature bonding process using polyol prepared Ag nanoparticle paste for electronic packaging application. Journal of Physics: Conference Series 379,1742-6596 (2012).
8 Jianfeng, Y., Guisheng, Z., Anming, H. & Zhou, Y. N. Preparation of PVP coated Cu NPs and the application for low-temperature bonding. Journal of Materials Chemistry 21, 15981-15986 (2011).
9 Hu, A. et al. Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Applied Physics Letters 97, 153117 (2010).
10 Bai, J. G., Calata, J. N. & Lu, G.-Q. Processing and characterization of nanosilver pastes for die-attaching SiC devices. Electronics Packaging Manufacturing, IEEE Transactions on 30, 241-245 (2007).
11 Akada, Y. et al. Interfacial bonding mechanism using silver metallo-organic nanoparticles to bulk metals and observation of sintering behavior. Materials transactions 49, 1537-1545 (2008).
12 Kim, J. S. et al. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 3, 95-101 (2007).
13 Morones, J. R. et al. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346 (2005).
14 Nadworny, P. L., Wang, J., Tredget, E. E. & Burrell, R. E. Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine: nanotechnology, biology and medicine 4, 241-251 (2008).
15 Wong, K. K. et al. Further Evidence of the Anti‐inflammatory Effects of Silver Nanoparticles. ChemMedChem 4, 1129-1135 (2009).
16 Lin, J. & Wang, C. Effects of surfactant treatment of silver powder on the rheology of its thick-film paste. Materials chemistry and physics 45, 136-144 (1996).
17 Chang, C. R. & Jean, J. H. Effects of Silver‐Paste Formulation on Camber Development during the Cofiring of a Silver‐Based, Low‐Temperature‐Cofired Ceramic Package. Journal of the American Ceramic Society 81, 2805-2814 (1998).
18 Rane, S., Puri, V. & Amalnerkar, D. A study on sintering and microstructure development of fritless silver thick film conductors. Journal of Materials Science: Materials in Electronics 11, 667-674 (2000).
19 Evanoff, D. D. & Chumanov, G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6, 1221-1231 (2005).
20 Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B 107, 668-677 (2003).
21 Tan, C. S., Gutmann, R. J. & Reif, L. R. Wafer level 3-D ICs process technology. 127 (2009).
22 Agarwal, R. et al. in Electronic Components and Technology Conference (ECTC), 858-863(2010)
23 Morita, T., Ide, E., Yasuda, Y., Hirose, A. & Kobayashi, K. Study of bonding technology using silver nanoparticles. Japanese Journal of Applied Physics 47, 6615 (2008).
24 Liang, L. et al. Increase in thermal stability induced by organic coatings on nanoparticles. Physical Review B 70, 205419 (2004).
25 Ide, E., Angata, S., Hirose, A. & Kobayashi, K. F. in Materials science forum. 383-388 (2006) (Trans Tech Publ).
26 Moon, K.-S. et al. Thermal behavior of silver nanoparticles for low-temperature interconnect applications. Journal of Electronic Materials 34, 168-175 (2005).
27 Ide, E., Angata, S., Hirose, A. & Kobayashi, K. Metal-metal bonding process using Ag metallo-organic nanoparticles. Acta Materialia 53, 2385-2393, (2005).
28 Ide, E., Hirose, A. & Kobayashi, K. F. Influence of bonding condition on bonding process using Ag metallo-organic nanoparticles for high temperature lead-free packaging. Materials transactions 47, 211-217 (2006).
29 Bai, J. G., Yin, J., Zhang, Z., Lu, G.-Q. & Van Wyk, J. D. High-temperature operation of SiC power devices by low-temperature sintered silver die-attachment. Advanced Packaging, IEEE Transactions on 30, 506-510 (2007).
30 Lei, T. G., Calata, J. N., Lu, G.-Q., Chen, X. & Luo, S. Low-temperature sintering of nanoscale silver paste for attaching large-area chips. Components and Packaging Technologies, IEEE Transactions on 33, 98-104 (2010).
31 Morisada, Y. et al. A low-temperature bonding process using mixed Cu–Ag nanoparticles. Journal of electronic materials 39, 1283-1288 (2010).
32 Siow, K. S. Mechanical properties of nano-silver joints as die attach materials. Journal of alloys and compounds 514, 6-19 (2012).
33 Mei, Y. et al. Simplification of Low-Temperature Sintering Nanosilver for Power Electronics Packaging. Journal of Electronic Materials 42, 1209-1218, (2013).
34 Maruyama, M., Matsubayashi, R., Iwakuro, H., Isoda, S. & Komatsu, T. Silver nanosintering: a lead-free alternative to soldering. Applied Physics A 93, 467-470 (2008).
35 Ogura, H. et al. Carboxylate-passivated silver nanoparticles and their application to sintered interconnection: a replacement for high temperature lead-rich solders. Journal of electronic materials 39, 1233-1240 (2010).
36 Kim, S. J., Stach, E. A. & Handwerker, C. A. Fabrication of conductive interconnects by Ag migration in Cu–Ag core-shell nanoparticles. Applied Physics Letters 96, 144101 (2010).
37 Owen, D. M. & Chokshi, A. H. An Evaluation of the densification characteristics of nanocrystalline materials Nanostructured materials 2 181-187 (1993).
38 Stanciu, L. A., Kodash, V. Y. & Groza, A. J. R. Effects of Heating Rate on Densification and Grain Growth during Field-Assisted Sintering of a-Al2O3 and MoSi2 Powders. Metallurgical and Materials Transactions 32 1333-1340 (2001).
39 Hou, H. Y., Shu, C. M. & Tsai, T. L. Reactions of cumene hydroperoxide mixed with sodium hydroxide. Journal of hazardous materials 152, 1214-1219, (2008).
40 Wang, Y.-W., Shu, C.-M., Duh, Y.-S. & Kao, C.-S. Thermal runaway hazards of cumene hydroperoxide with contaminants. American Chemical Society 40, 1125-1132
41 Declan R., Malcolm R., Smyth, Raymond G. Leonardb, Investigations into the cumene hydroperoxidebased cure chemistry of anaerobic adhesives. Int. J. Adhesion and adhesives 17 349-352 (1997).
42 Jordan, W., Barneveld, H., Gerlich, O., Kleine-Boyman, M. & Ullrich, J. Phenol-production. Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed. New York: Wiley-VCH 30000 (2002).
43 Mark, H. F. Encyclopedia of polymer science and technology: plastics, resins, rubber, fibres. Vol. 2 232 (Interscience Publishers, 1964).
44 Di Somma, I., Andreozzi, R., Canterino, M., Caprio, V. & Sanchirico, R. Thermal decomposition of cumene hydroperoxide: Chemical and kinetic characterization. AIChE Journal 54, 1579-1584 (2008).
45 Liu, S. H. et al. Effects of thermal runaway hazard for three organic peroxides conducted by acids and alkalines with DSC, VSP2, and TAM III. Thermochimica Acta 566, 226-232 (2013).
46 Miyake, A. & O’hama, Y. Thermal hazard analysis of cumene hydroperoxide using calorimetry and spectroscopy. Journal of Thermal Analysis and Calorimetry 93, 53–57 (2008).
47 Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters 49, 57-61 (1982).
48 Hansma, P. K. & Tersoff, J. Scanning tunneling microscopy. Journal of Applied Physics 61 R1 (1987).
49 Binnig, G., Quate, C. F. & Gerber, C. Atomic Force Microscope. Physical Review Letters 56, 930-933 (1986).
50 Meyer, E. Atomic force microscopy. Progress in Surface Science 41, 3-49 (1992).
51 Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. 7 × 7 Reconstruction on Si(111) Resolved in Real Space. Physical Review Letters 50, 120-123 (1983).
52 Binnig1, G., Ch. Gerber1, E. S., Albrecht2, T. R. & Quate2, C. F. Atomic resolution with atomic force microscope. Europhysics Leti'efs 3 1281-1286 (1987).
53 Oesterschulze, E. & Stopka, M. Photothermal imaging by scanning thermal microscopy. Journal of Vacuum Science & Technology A 14, 1172-1177 (1996).
54 Duncan M.P., Michael R., Azzedine H., Hubert M P., Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis. International Journal of Pharmaceutics 192 85-96 (1999).
55 Gmelin, E., Fischer, R. & Stitzinger, R. Sub-micrometer thermal physics ± An overview on SThM techniques. Thermochimica Acta 310, 1-17 (1997).
56 Pylkki, R. J., Moyer, P. J. & West, P. E. Scanning near-field optical microscopy and scanning thermal microscopy. Jpn. J. Appl. Phys 33 3785-3790 (1994).
57 Nelson, B. A. & King, W. P. Measuring material softening with nanoscale spatial resolution using heated silicon probes. Review of Scientific Instruments 78 023702 (2007).
58 Hammiche, A., Reading, M., Pollock, H., Song, M. & Hourston, D. Localized thermal analysis using a miniaturized resistive probe. Review of Scientific Instruments 67, 4268-4274 (1996).
59 Huang, D.A. In-situ thermal analysis and scanning thermal lithography in micro and nano scale.NCKU master's thesis (2008).
60 Huang, C. M. Low-temperature scanning thermal lithography for silver nanoparticle synthesis and patterning. NCKU master's thesis (2010).
61 Yeh, C. H. Plasmonic resonances of silver nanoparticles synthesized and patterned by scanning thermal lithography. NCKU master's thesis (2012).
62 Huang, C.M., Yeh, C.H., Chen, L., Huang, D.A. & Kuo, C. Energetic-assisted scanning thermal lithography for patterning silver nanoparticles in polymer films. ACS applied materials & interfaces 5, 120-127 (2012).
63 Hung, P. Anisotropic thermal annealing of poly(3-hexyl thiophene) by scanning thernal lithography. NCKU master's thesis (2013).
64 Stanciu, L. A., Kodash, V. Y. & Groza, A. J. R. Effects of heating rate on densification and grain growth during field-assisted sintering of a-Al2O3 and MoSi2 Powders. Metallurgical and Materials Transactions 32 2633-2638 (2001).