簡易檢索 / 詳目顯示

研究生: 黃舜漁
Huang, Shun-Yu
論文名稱: 鉛鈀氧摻雜鈷薄膜之磁電性研究
The magnetic and electrical properties of PbPd1-xCoxO2 research
指導教授: 黃榮俊
Huang, J.C.A.
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 69
中文關鍵詞: 自旋零能隙半導體溶膠凝膠法
外文關鍵詞: spin gapless semiconductor, sol-gel method
相關次數: 點閱:332下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    PbPd1-xCoxO2透過理論計算具有特殊的能帶結構¬¬,稱為自旋無能隙半導體。由於可能兼具高自旋極化率與大自旋弛豫長度,所以近年來受到相當程度的注目。
    本論文經由溶膠凝膠法與旋轉塗佈法製備PbPd0.81Co0.19O2薄膜。薄膜的最優化熱處理工藝被確定為430℃氧化5min+700℃煅燒30min。煅燒之後的薄膜為單相多晶奈米顆粒膜,具有體心正交結構。電性方面,PbPd0.81Co0.19O2薄膜的金屬-絕緣體轉變溫度為358K,遠高於目前報導的其它的PbPd1-xCoxO2材料。薄膜的電導率為溫度的冪指數函數,說明薄膜具有零能隙能帶結構。磁性方面,薄膜具有鐵磁性與超順磁性的共存。鐵磁性為內稟鐵磁性,且保持至380K以上;超順磁性則來源於薄膜內部的大量鐵磁性奈米顆粒。另外,薄膜的還具有兩個有趣的特性:一是飽和磁化量隨溫度上升而增加;二是350K以下飽和磁化量在某個強磁場下會有突降。薄膜特殊的自旋零能隙能帶結構可以用來合理解釋這些特性。

    According to the theoretical calculation, PbPd1-xCoxO2, the so-called spin gapless semiconductor, has a special energy band structure. Due to the potential of possessing the high spin polarization and long spin relaxation length, it attracts much attention in recent years.
    In this thesis, sol-gel spin coating method was used to fabricate PbPd0.81Co0.19O2 thin film. The optimal parameters of heat treatment were oxidation at 430℃ for 5 min plus calcination at 700 for 30 min. The calcined film was the single-phase multicrystalline nanograin one with a body-center orthorhombic structure. The metal-insulator transition temperature for the PbPd0.81Co0.19O2 film was 358K, much higher than all the PbPd1-xCoxO2 materials reported previously. The film’s conductivity was found to have a power dependence on the temperature, which indicated the film has a gapless energy band structure. As to the magnetic properties, the ferromagnetism and the superparamagnetism coexisted within the film. The ferromagnetism was proved to be intrinsic and persisted up to 380 K. The superparamagnetism was caused by large number of ferromagnetic nanograins. Besides, two interesting features were also observed: one is the saturation magnetization increasing with the temperature; the other is the saturation magnetization measured at <350 K decreasing abruptly at some critical field. The special spin gapless energy band structure of the film were used to explain these phenomena reasonably.

    目錄 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 5 1-3 研究動機 12 第二章 相關理論介紹 13 2-1溶膠-凝膠法 13 2-1-1前言 13 2-1-2溶膠-凝膠定義 14 2-1-3有機前導物法 18 2-1-4 螯合劑 20 2-1-5溶劑 23 2-2磁性理論 24 2-2-1前言 24 2-2-2反磁性(Diamagnetism) 24 2-2-3順磁性(Paramagnetism) 26 2-2-4鐵磁性(Ferromagnetism) 27 2-2-5反鐵磁性(Antiferromagnetism) 29 2-2-6亞鐵磁性(Ferrimagnetism) 30 2-2-7超順磁性(Super paramagnetism) 31 第三章 樣品製備與儀器量測介紹 32 3-1 有機前導物溶膠溶液製作 32 3-2 PbPd_(1-x) Co_x O_2薄膜製作 34 3-3 熱重分析儀 36 3-4 X-RAY薄膜繞射儀 37 3-5 高解析熱電子型場發射掃描式電子顯微鏡(FE-SEM) 38 3-6 超導量子干涉儀 (SQUID) 39 3-7 物理性質量測系統 41 3-8 X-ray吸收光譜量測 43 第四章 實驗結果與分析 45 4-1 PbPd_0.81 Co_0.19 O_2熱重分析 45 4-2 X-RAY薄膜繞射分析 47 4-3 掃瞄式電子顯微鏡(SEM)表面結構分析 50 4-4 PbPd_0.81 Co_0.19 O_2薄膜電性分析 55 4-5 PbPd_0.81 Co_0.19 O_2薄膜磁性分析 59 4-6 PbPd_0.81 Co_0.19 O_2 X-Ray近緣吸收光譜 64 第五章 結論 66 參考文獻 67

    [1]. Charles Kittel, Introduction to Solid state physics, (1996), John Weley&Sons
    [2]. X.L. Wang, Phys. Rev. Lett. 100, 156404, (2008).
    [3]. K.S. Novoselov et al., Science 306 666 (2004).
    [4]. X. L. Wang, G. Peleckis, C. Zhang, H. Kimura, and S. Dou, Adv. Mater. 21, 2196 (2009).
    [5]. T. C. Ozawa, T. Taniguchi, Y. Nagata, Y. Noro, T. Naka, and A. Matsushida, J. Alloys Compd. 388, 1 (2005).
    [6]. K. J. Lee, S. M. Choo, J. B. Yoon, K. M. Song, Y. Saiga, C. Y. You, N. Hur, S. I. Lee, T. Takabatake, and M. H. Jung, J. Appl. Phys. 107, 09C306 (2010).
    [7]. K. J. Lee, S. M. Choo, Y. Saiga, T. Takabatake, and M. H. Jung, J. Appl. Phys. 109, 07C316 (2011).
    [8]. S.A. Touat, F. Litimein, A. Tadjer, B. Bouhafs, Physica B, 40, 625-6315, (2010).
    [9]. Y.F. Li, Z. Zhou, P.W. Shen, ACS Nano (2009), 3, 1952-1958.
    [10]. Yanfei Pan, Zhongqin Yang, Phys. rev. B, 82, 195308, (2010).
    [11]. 蔣孝澈,“溶凝膠製作與應用專輯”,化工,46(5),pp.12-15(1999)。
    [12]. 周幸妃,國立成功大學資源工程研究所碩士論文(2003)。
    [13]. Brinker, C. J. and G. W. Scherer, Sol-Gel Science, Academic Inc.,New York(1990).
    [14]. M. Kakihana, “Sol-Gel Preparation of High Temperature Superconducting Oxides”, J. Sol-Gel Sci. Tech., 6, pp. 7-55(1996).
    [15]. M. Kakihana, M. Arima, M. Yashima, M. Yoshimura, Y. Nakamura, H. Mazaki and H. Yasuoka, “Polymerized Complex Route to the Synthesis of Multicomponent Oxides”, J. Sol-Gel Sci. Tech., 55, pp.65-76(1994).
    [16]. 李俊義,分析化學,科技圖書股份有限公司,台北(1990)。
    [17]. 蔡政達,國立成功大學材料科學及工程研究所博士論文,(1999)。
    [18]. Martell, A. E. and R. D. Hancock, Metal Complexes in Aqueous Solutions, Plenum Inc., New York(1996).
    [19]. 沈力陽,合成化學(上),文京圖書有限公司,台北(1996)。
    [20]. 劉昇旭,國立成功大學物理研究所碩士論文,(2005)。
    [21]. B.D. Cullity, Introduction to magnetic materials, (1972) Addison-Wesley Publishing Company.
    [22]. K. H. J. Buschow, F. R. de Boer, Physics of magnetism and magnetic material, (2004) kluwer academic publisher
    [23]. 馮端,金國鈞,凝聚態物理學,(2003),高等教育出版社。
    [24]. 嚴密,彭曉領,磁學基礎與磁性材料,(2006),浙江大學出版社。
    [25]. 蘇書玄,國立成功大學物理研究所碩士論文,(2006)。
    [26]. 饒佩瑩,國立成功大學航空太空工程研究所碩士論文,(2003)。
    [27]. A. A. Vaipolon, S. A. Kijaev, L. V. Kradinova, A. M. Polubotko, V. V. Popov, V. D. Prochukhan, Yu.V. Rud, and V. E. Skoriukin, J. Phys.: Condens. Matter 4, 8035 (1992).
    [28]. I. M. Tsidilkovski, G. I. Harus, and N. G. Shelushinina, Adv. Phys. 34, 43 (1985)

    無法下載圖示 校內:2013-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE