簡易檢索 / 詳目顯示

研究生: 林信安
Lin, Sin-An
論文名稱: 以風洞實驗模擬大氣邊界層與風機尾流交互作用
An Experimental Study of the Interaction between Wind Turbine Wake and Atmospheric Boundary Layer
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 136
中文關鍵詞: 風洞實驗大氣邊界層actuator disk風力發電機尾流熱線測速紊流尺度Hilbert Huang Transform
外文關鍵詞: Atmospheric Boundary Layer, Wind Turbine Wake, Actuator Disk, Turbulence, Hilbert Huang Transform
相關次數: 點閱:177下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提供了風力發電機與透孔盤模型在風洞大氣邊界層中的尾流速度場量測結果,實驗於內政部建研所之低速循環式環境風洞中的第一測試段進行,截面積為4m×2.6m,長21m。使用兩組模型來模擬風機,分別為轉子式及透孔盤模型,並將實驗分為兩組不同變因之比較,來分別比較模型與邊界層厚度不同對尾流造成之影響。實驗以移動機構裝置Dantec公司之Stream Line 量測系統搭配二維熱線探針55P61,來量測模型尾流的速度分佈,並搭配轉子式風速計Dp-103量測來流風速。

    實驗分為兩組,第一組實驗為不同大氣邊界層厚度對風力發電機尾流之影響,來流風速約為5m/s,邊界層厚度分別為1.85D及5.55D,都使用轉子式風機模型,且固定翼尖端速度比λ為0.113,量測至模型x=7D之剖面。第二組實驗為不同模型之尾流特性差異,來流風速約為5m/s,邊界層厚度為5.5D,使用透孔盤與轉子式模型進行比較,轉子式風機模型之λ為0.13,量測至模型x=7D之剖面。
    依序分析各剖面之流場均勻度、風速分佈、紊流強度分佈、紊流積分尺度與雷諾應力,並使用HHT分析來探討尾流區內的紊流擾動能量分佈。比對分析結果之流場均勻度、平均風速和紊流強度等資料後,轉子式模型尾流於邊界層較薄的狀況下發展距離較短,呈現模型本身尾流效應會與大氣邊界層交互作用並影響尾流發展距離與特徵,於風力發電機設置時須考慮大氣邊界層與風機之比例與尾流發展距離之關係。而透孔盤因推力系數較大,產生之尾流效應較強,並有較長之尾流發展距離,同時發現轉子式模型呈現的尾流是非對稱的,也造成透孔盤模型於模擬風力發電機尾流之減風作用。

    於HHT能量頻譜分析中得到兩組實驗中的紊流擾動能量組成,與來流之比較發現通過模型的的高頻擾動能量組成比例增加,然後隨距離的增加而逐步降低。於本實驗中的各組數據皆能發現此現象,探討後發現若邊界層較高,現象較不明顯,於不同模型之比較中發現轉子式模型之尾流擾動於高頻之比例較高,使用透孔盤於模擬風力發電機尾流於時須將擾動之能量頻譜,也就是紊流組成結構納入考量。

    SUMMARY

    This paper examines experimentally the wake characteristics of a model wind turbine and a porous disk in turbulent boundary layers, respectively. The experiments simulating the atmospheric boundary layer flow condition were conducted in an environmental wind tunnel. Under the experimental condition, two boundary layers of different thickness, about 5.5D and 1.85D, where D denotes the diameter of model blade. The velocity measurements were based on the hot-wire anemometer. Hilbert Huang Transform had been used to analysis the turbulent characteristics. The result shows that velocity deficit was decrease in the thicker boundary layer, and had less turbulent-increase effect in the thicker boundary layer. The relationship between velocity deficit and turbulence intensity increase were in direct proportion, but porous disk shows they were in reverse proportion. The turbulent integral time scale shows large turbulent eddies dominated the turbulence in the thicker boundary layer, and small turbulent eddies dominated the turbulence in the thinner boundary layer. The strouhal number from the main turbulent frequency was consistent with the results of turbulent integral time scale. The wake flow development in the thicker boundary layer appear to be dominated by the large scale eddies in the boundary layer, whereas in the thinner boundary layer, the wake flow development relies on the turbulent eddies generated by the model.

    1 緒論 1 1-1 前言 1 1-2 研究動機及目的 3 1-3 文獻回顧 4 1-3-1 離岸風力發電的發展與介紹 4 1-3-2 大氣邊界層特性與成因 5 1-3-3 風力發電機尾流 7 1-3-4 大氣邊界層的紊流特性 10 1-3-5 風機尾流與大氣邊界層交互作用 11 1-3-6 風洞模擬的大氣邊界層 12 2 實驗規劃與設備 16 2-1 環境風洞與實驗設備內政部建研所環境風洞介紹 16 2-2 轉子式風速計 17 2-3 熱線測速儀 17 2-4 資料擷取系統 18 2-5 風機及透孔盤模型 19 2-6 量測與取樣條件 20 3 分析方法與理論 22 3-1 大氣邊界層 22 3-1-1 垂直風速分佈 22 3-1-2 大氣紊流頻譜 25 3-2 尾流速度與紊流特性 26 3-2-1 尾流場速度分佈之不均勻度 28 3-2-2 紊流強度與積分時間尺度 30 3-3 紊流頻譜分析-希爾伯特黃轉換 32 3-3-1 EMD(empirical mode decomposition) 33 3-3-2 EEMD(Ensemble empirical mode decomposition) 34 3-3-3 Hilbert transform (HT) 35 4 結果與討論 36 4-1 風洞模擬大氣邊界層驗證 36 4-2 尾流速度與紊流特性分析 39 4-2-1 尾流風速不均勻度 39 4-2-2 尾流平均速度與紊流強度 40 4-2-3 紊流積分尺度與雷諾應力 45 4-2-4 大氣邊界層對尾流特性之影響 48 4-3 擾動能量頻譜分析 50 4-3-1 IMF的擾動能量與總擾動能量比較 50 4-3-2 主要IMF擾動頻率與紊流積分尺度比較 51 5 結論與未來展望 54 5-1 結論 54 5-2 建議與未來展望 57 6 參考文獻 58 7 附錄 64 7-1 表格 64 7-2 圖片 73 7-3 原始數據 107

    [1] ANSI “Minimum Design Loads for Buildings and Other Structures.”, ASCE Publications, Vol. 7, No. 5, (2006)
    [2] Aubrun, S. Devinant, P. & Espana, G. “Physical modelling of the far wake from wind turbines. Application to wind turbine interactions.”, In Proceedings of the European Wind Energy Conference, p.7-10, Milan, (2007)
    [3] Barthelmie, R. J. Frandsen, S. T. Hansen, K. S. Rados, K. Schlez, W. & Neckelmann, S. "Modelling the impact of wakes on power output at Nysted and Horns Rev.", European Wind Energy Conference, (2009)
    [4] Barthelmie, R. J. Frandsen, S. T. Rathmann, O. Hansen, K. S. Politis, E. S. Prospathopoulos, J. & Neubert, A. "Flow and wakes in large wind farms in complex terrain and offshore.", European Wind Energy Conference, (2008)
    [5] Bendat, J. S. & Allan, G. P. “Random data: analysis and measurement procedures.”, Vol.729, John Wiley & Sons, (2011)
    [6] Birol, F. “World energy outlook 2010.”, International Energy Agency, (2010)
    [7] Boashash, B. "Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals.", Proceedings of the IEEE, Vol.80.4, p.520-538, (1992)
    [8] Boashash, B. "Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications.", Proceedings of the IEEE, Vol.80.4, p.540-568, (1992)
    [9] Burton, T. Jenkins, N. Sharpe, D. & Bossanyi, E. “Wind energy handbook.”, John Wiley & Sons, (2011)
    [10] Chamorro, L. P. & Porté-Agel, F. "A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects.", Boundary-layer meteorology, Vol.132.1, p.129-149, (2009)
    [11] Davenport, A. G. "Rationale for determining design wind velocities.", ASCE Journal of the Structural, Division 86.5, p.39-68, (1960)
    [12] Dobby, G.S. & Finch, J.A. “Probes for hot-wire anemometer”, Dantec Dynamic Inc., (1990)
    [13] Frandsen, S. T. “Turbulence and turbulence-generated structural loading in wind turbine clusters.”, Risø National Laboratory, (2007)
    [14] Garratt, J. R. “The atmospheric boundary layer.”, Cambridge university press, (1994)
    [15] Hansen, K. S. Barthelmie, R. J. Jensen, L. E. & Sommer, A. "The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm.", Wind Energy, Vol.15.1, p.183-196, (2012)
    [16] Harris, R. I. “Some further thoughts on the spectrum of gustiness in strong winds.”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.33-3, p.461-477, (1990)
    [17] Holton, J. R. & Hakim, G. J. “An introduction to dynamic meteorology.”, Academic press, (2012)
    [18] Hu, H. Yang, Z. & Sarkar, P. "Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind.", Experiments in fluids, Vol.52.5, p.1277-1294, (2012)
    [19] Huang, N. E. Shen, Z. & Long, S. R. "A new view of nonlinear water waves: The Hilbert Spectrum 1.", Annual review of fluid mechanics, Vol.31.1, p.417-457, (1999)
    [20] Huang, N. E. Shen, Z. Long, S. R. Wu, M. C. Shih, H. H. Zheng, Q. & Liu, H. H. "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.", Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, Vol.454.1971, p.903-995, (1998)
    [21] IEC “IEC 61400-3 Design requirements for offshore wind turbines.”, IEC international standards, (2009)
    [22] Jorgenson, F. "How to Measure Turbulence with Hot Wire Anemometers.", Dantec Dynamic Inc., (2004)
    [23] Leow, W. W. & Liang, L. C. " Atmospheric Boundary Layer Wind Tunnel Design.", TEC Group in the University of Adelaide, Australia, (2005)
    [24] Madsen, H. A. Larsen, G. C. & Thomsen, K. "Wake flow characteristics in low ambient turbulence conditions.", Copenhagen Offshore Wind, (2005)
    [25] Medici, D. & Alfredsson, P. H. "Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding.", Wind Energy, Vol.9.3, p. 219-236, (2006)
    [26] Miau, J.J. Tsai, Y.S. & Lin, S.A. “Data analysis on wind turbulence.”, AWEA Offshore Wind Power, Poster, (2012)
    [27] Miau, J.J. Tsai, Y.S. & Lin, S.A. “Data turbulence analysis using Hilbert-Huang transformation.”, Niigata Graduate Reserach Forum, Poster, (2013)
    [28] National instruments “NI Cdaq-9172 user manual”, National instruments, (2012)
    [29] Neustadter, H. E. & Spera, D. A. "Method for evaluating wind turbine wake effects on wind farm performance.", Journal of Solar Energy Engineering, Vol.107.3 p.240-243, (1985)
    [30] Rae, W. H. & Pope, A. “Low-speed wind tunnel testing.”, John Wiley, (1984)
    [31] Rogdakis, G. Garcia-Valle, R. & Arana, I. “Transient Model Validation of Fixed-Speed Induction Generator Using Wind Farm Measurements.”, IEEE Transactions on Power Systems, Vol. 27, p.564-571, (2012)
    [32] Sanderse, B. "Aerodynamics of wind turbine wakes.", Energy Research Center of the Netherlands (ECN), ECN-E–09-016, Petten, The Netherlands, (2009)
    [33] Sawyer, S. & Rave, K. "Global wind 2010 report.", GWEC, (2010)
    [34] Shiau, B. S. “Velocity Spectra and Turbulence Statistics at the Northeastern Coast of Taiwan under High-wind condition.”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.88, p.139-151, (2000)
    [35] Stull, R.B. “An introduction to boundary layer meteorology.” Springer, Vol.13, (1988)
    [36] Taylor, G. I. "The spectrum of turbulence.", Proceedings of the Royal Society of London, Series A-Mathematical and Physical Sciences, Vol.164.919, p.476-490 (1938)
    [37] Tennekes, H. & Lumley, J. L. “A first course in turbulence.”, MIT press, (1972)
    [38] Tsai, Y. S. Wu, C. Li, C. & Lin, P. H. "Intertidal zone wind profiling using lidar measurement.", Proceedings of the 35th Ocean Engineering Conference, Taiwan National Sun Yat-sen University, (2013)
    [39] Vermeer, L. J. Sørensen, J. N. & Crespo, A. "Wind turbine wake aerodynamics.", Progress in aerospace sciences Vol.39.6, p.467-510, (2003)
    [40] VESTAS Inc. “VESTAS V47 Data sheet.”, VESTAS Inc., (2002) http://www.iufmrese.cict.fr/concours/2002/CG_2002STI_lycee/Pour_en_savoir_plus/Vestas_V47.pdf
    [41] von Karman, T. "Progress in the statistical theory of turbulence.", Proceedings of the National Academy of Sciences of the United States of America, Vol.34(11), p.530, (1948)
    [42] Wu, Z. & Huang, N. E. "A study of the characteristics of white noise using the empirical mode decomposition method.", Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, Vol.460.2046, p.1597-1611 (2004)
    [43] Wu, Z. & Huang, N. E. "Ensemble empirical mode decomposition: a noise-assisted data analysis method.", Advances in adaptive data analysis, Vol.1.01 p.1-41, (2009)
    [44] 中央大學大氣科學系 "台灣風能資料庫.", 臺灣風能實驗室網頁, http://www.atm.ncu.edu.tw/93/wind/
    [45] 中華民國內政部營建署建築管理組 “建築物耐風設計規範及解說 第二章:建築物設計風力之計算.”, 中華民國內政部營建署, 台灣, (2013)
    [46] 吳沛鴻 "使用侵入型速度儀進行紊流性質量測之探討.", 成功大學航空太空工程學系學位論文, (2013)
    [47] 胡志忠 "非定常流中之瞬時渦流溢放行為.", 成功大學航空太空工程學系學位論文 , (2000)
    [48] 苗君易 “流體力學知多少.”, (2003)
    [49] 苗君易, 呂宗行, 王大中, 及曾建洲 “能源國家型科技計畫總期程成果效益報告:風場及風機性能監測之技術研究(I)”,行政院國家科學委員會 , 離岸風力主軸計畫, 台灣, (2014)
    [50] 苗君易, 陳子良, 陳儀珍, 及林信安 “風力機於模擬大氣邊界層內之尾流特性實驗研究.”, 原能會核能研究所委託研究報告, (2013)
    [51] 馬利艷 "離岸風力發電產業之機會與挑戰.", 中華民國機械工業期刊, 319期, 4-416頁, (2009)
    [52] 高義明 "內政部建研所環境風洞校驗及二維鈍形體空氣動力流場實驗研究.", 成功大學航空太空工程學系學位論文 , (2005)
    [53] 馮俊皓 "風機模型與透孔盤尾流特性分析及探討.", 成功大學航空太空工程學系學位論文, (2014)
    [54] 經濟部能源局 “2012 能源產業白皮書”, 經濟部能源局, (2012)
    [55] 經濟部能源局 “風力發電離岸系統示範獎勵辦法”,經濟部能源局, 台灣, (2012)
    [56] 劉昊 "脈動式管流之初始不穩定現象探討.", 成功大學航空太空工程學系學位論文 , (2011)
    [57] 蔡易達 "垂直軸風力機性能與尾流區特性之實驗研究.", 成功大學航空太空工程學系學位論文 , (2011)
    [58] 鄭孟寧, 及周承志 “歐洲離岸風電發展趨勢.”, 工研院, 台灣, (2012)
    [59] 鄭啟明 “標準地況自然風場實場監測與特性分析(三).”, 內政部建築研究所委託研究報告, (2011)
    [60] 離岸風力主軸計畫 “國際發展趨勢.”, 離岸風力主軸計畫網站

    下載圖示 校內:2019-08-27公開
    校外:2019-08-27公開
    QR CODE