| 研究生: |
許佩玲 Hsu, Pei-Ling |
|---|---|
| 論文名稱: |
基質細胞蛋白CCN1引發小鼠心肌損傷之作用及機制 The matricellular protein CCN1 induces cardiomyopathy in mice |
| 指導教授: |
莫凡毅
Mo, Fan-E |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | CCN1 、心毒性 、異丙基腎上腺素 、艾黴素 、整合素 、XIAP |
| 外文關鍵詞: | CCN1, cardiotoxicity, isoproterenol, doxorubicin, integrins, XIAP |
| 相關次數: | 點閱:106 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心血管疾病是造成全世界人口死亡最主要的病因。當心臟受損時,基質細胞蛋白CCN1會在受損組織中表現。CCN1透過結合不同整合素受器可促進血管新生作用,卻也會促進纖維母細胞的凋亡。CCN1在心臟受損中表現所扮演的生理角色仍不清楚,因此本研究進行探討心臟受損時CCN1調控心肌細胞存亡之角色。為測試CCN1在老鼠心臟受損的角色,我們利用基因轉殖老鼠Ccn1dm/dm,其帶有兩序列突變(double mutant; dm) Ccn1基因使CCN1-dm蛋白選擇性無法結合受器整合素α6β1而喪失引發細胞凋亡能力,施以兩種不同心臟損傷的模式,包含(1)異丙基腎上腺素引發心臟過荷的傷害及(2)艾黴素心毒性引發心臟損傷。我們分別給予小鼠異丙基腎上腺素(皮下注射100毫克/公斤/天,連續五天)或者艾黴素(腹腔注射15 毫克/公斤,單一劑量)以引發小鼠心臟受損。在異丙基腎上腺素或艾黴素處理下,Ccn1dm/dm 老鼠對於心臟細胞凋亡或者心肌組織受損有顯著的耐受性,顯示CCN1是一個重要的病理因子,在心臟受刺激時表現進而引發心肌組織受損。藉由一系列初代培養心肌細胞及H9c2心肌母細胞實驗,我們也證實CCN1是藉由與整合素α6β1結合而提高p38促分裂原活化蛋白激酶的活化,進而釋放粒線體中的Smac及HtrA2至細胞質來降低XIAP抑制細胞凋亡作用,使細胞對FasL引發細胞凋亡的感受性增加。綜合以上所述,阻斷CCN1與α6β1的結合可消除小鼠受異丙基腎上腺素及艾黴素引發的相關心肌損傷,顯示CCN1在促進異丙基腎上腺素及艾黴素引發的心毒性扮演重要的角色
Cardiovascular diseases remain a major cause of death worldwide. Upon heart injury, extracellular matrix molecule CCN1 is expressed in damaged tissues. Despite its well-documented pro-angiogenic activities, CCN1 promotes fibroblast apoptosis in some contexts. The physiological role of CCN1 in an injured heart was not clear. We intended to discern how CCN1 may regulate cardiac cell survival during heart injury. To test the role of CCN1 in cardiac injury in mice, we employed two different myocardial injury models, including a work-overload related injury induced by isoproterenol (ISO) and a chemical related injury induced by the chemotherapy agent doxorubicin (DOX). A line of knock-in mice carrying an apoptosis-defective Ccn1 mutant allele, Ccn1-dm, which has disrupted integrin α6β1 binding sites, were tested in the ISO- (100 mg/kg/day subcutaneous injection for 5 days) or DOX (single intraperitoneal injection of 15 mg/kg)-induced cardiac injury. Ccn1dm/dm mice were resistant to both ISO- and DOX-induced cardiac cell apoptosis or myocardial tissue damage, indicating that CCN1 is a critical pathophysiological regulator mediating cardiomyocyte apoptotic death in cardiac injury. We further demonstrated that CCN1 enhanced cellular susceptibility to FasL-induced apoptosis by engaging integrin α6β1 to promote p38 MAPK activation and the release of mitochondrial Smac and HtrA2 to cytosol, thereby counteracting the inhibition of XIAP and facilitating apoptosis using primary neonatal cardiomyocytes and H9c2 cardiomyoblast. In summary, CCN1 is a critical pathophysiological regulator mediating cardiomyocytes apoptotic death upon ISO- and DOX-induced cardiac injury. Disrupting CCN1/α6β1 engagement abolishes ISO- and DOX-associated cardiomyopathy in mice.
Aiken, M.J., Suhag, V., Garcia, C.A., Acio, E., Moreau, S., Priebat, D.A., Chennupati, S.P., and Van Nostrand, D. (2009). Doxorubicin-induced cardiac toxicity and cardiac rest gated blood pool imaging. Clin Nucl Med 34, 762-767.
Alnemri, E.S., Livingston, D.J., Nicholson, D.W., Salvesen, G., Thornberry, N.A., Wong, W.W., and Yuan, J. (1996). Human ICE/CED-3 protease nomenclature. Cell 87, 171.
Babic, A.M., Chen, C.C., and Lau, L.F. (1999). Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol 19, 2958-2966.
Bhuiyan, M.S., and Fukunaga, K. (2007). Inhibition of HtrA2/Omi ameliorates heart dysfunction following ischemia/reperfusion injury in rat heart in vivo. Eur J Pharmacol 557, 168-177.
Binah, O., Shilkrut, M., Yaniv, G., and Larisch, S. (2004). The Fas receptor-1,4,5-IP3 cascade: a potential target for treating heart failure and arrhythmias. Ann N Y Acad Sci 1015, 338-350.
Bork, P. (1993). The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS letters 327, 125-130.
Brigstock, D.R., Goldschmeding, R., Katsube, K.I., Lam, S.C., Lau, L.F., Lyons, K., Naus, C., Perbal, B., Riser, B., Takigawa, M., and Yeger, H. (2003). Proposal for a unified CCN nomenclature. Mol Pathol 56, 127-128.
Brooks, W.W., and Conrad, C.H. (2009). Isoproterenol-induced myocardial injury and diastolic dysfunction in mice: structural and functional correlates. Comp Med 59, 339-343.
Burlew, B.S., and Weber, K.T. (2000). Connective tissue and the heart. Functional significance and regulatory mechanisms. Cardiol Clin 18, 435-442.
Campbell, K.P. (1995). Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80, 675-679.
Carvalho, C., Santos, R.X., Cardoso, S., Correia, S., Oliveira, P.J., Santos, M.S., and Moreira, P.I. (2009). Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16, 3267-3285.
Chagoya de Sanchez, V., Hernandez-Munoz, R., Lopez-Barrera, F., Yanez, L., Vidrio, S., Suarez, J., Cota-Garza, M.D., Aranda-Fraustro, A., and Cruz, D. (1997). Sequential changes of energy metabolism and mitochondrial function in myocardial infarction induced by isoproterenol in rats: a long-term and integrative study. Can J Physiol Pharmacol 75, 1300-1311.
Chen, C.C., Chen, N.Y., and Lau, L.F. (2001a). The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem 276, 10443-10452.
Chen, C.C., Juric, V., and Lau, L.F. (2011). The extracellular matrix protein CCN1 dictates TNFalpha and FasL cytotoxicity in vivo. Adv Exp Med Biol 691, 595-603.
Chen, C.C., and Lau, L.F. (2009). Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41, 771-783.
Chen, C.C., Mo, F.E., and Lau, L.F. (2001b). The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts. J Biol Chem 276, 47329-47337.
Chen, C.C., Young, J.L., Monzon, R.I., Chen, N., Todorovic, V., and Lau, L.F. (2007). Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. Embo J 26, 1257-1267.
Chen, N.Y., Chen, C.C., and Lau, L.F. (2000). Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans. J Biol Chem 275, 24953-24961.
Chien, W., Kumagai, T., Miller, C.W., Desmond, J.C., Frank, J.M., Said, J.W., and Koeffler, H.P. (2004). Cyr61 suppresses growth of human endometrial cancer cells. J Biol Chem 279, 53087-53096.
Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42.
Ellis, P.D., Metcalfe, J.C., Hyvonen, M., and Kemp, P.R. (2003). Adhesion of endothelial cells to NOV is mediated by the integrins alphavbeta3 and alpha5beta 1. J Vasc Res 40, 234-243.
Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495-516.
Estrugo, D., Fischer, A., Hess, F., Scherthan, H., Belka, C., and Cordes, N. (2007). Ligand bound beta1 integrins inhibit procaspase-8 for mediating cell adhesion-mediated drug and radiation resistance in human leukemia cells. PLoS One 2, e269.
Gao, R., and Brigstock, D.R. (2004). Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem 279, 8848-8855.
Gao, R., and Brigstock, D.R. (2006). A novel integrin alpha(5)beta(1) binding domain in module 4 of connective tissue growth factor (CCN2/CTGF) promotes adhesion and migration of activated pancreatic stellate cells. Gut 55, 856-862.
Giancotti, F.G., and Ruoslahti, E. (1999). Integrin signaling. Science 285, 1028-1032.
Gopalakrishna, R., and Jaken, S. (2000). Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28, 1349-1361.
Grzeszkiewicz, T.M., Kirschling, D.J., Chen, N.Y., and Lau, L.F. (2001). CYR61 stimulates human skin fibroblast migration through integrin alpha(v)beta(5) and enhances mitogenesis through integrin alpha(v)beta(3), independent of its carboxyl-terminal domain. J Biol Chem 276, 21943-21950.
Grzeszkiewicz, T.M., Lindner, V., Chen, N.Y., Lam, S.C.T., and Lau, L.F. (2002). The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans. Endocrinology 143, 1441-1450.
Hall, S.A., Cigarroa, C.G., Marcoux, L., Risser, R.C., Grayburn, P.A., and Eichhorn, E.J. (1995). Time course of improvement in left ventricular function, mass and geometry in patients with congestive heart failure treated with beta-adrenergic blockade. J Am Coll Cardiol 25, 1154-1161.
Hasinoff, B.B., Hellmann, K., Herman, E.H., and Ferrans, V.J. (1998). Chemical, biological and clinical aspects of dexrazoxane and other bisdioxopiperazines. Curr Med Chem 5, 1-28.
Hawtin, R.E., Stockett, D.E., Wong, O.K., Lundin, C., Helleday, T., and Fox, J.A. (2010). Homologous recombination repair is essential for repair of vosaroxin-induced DNA double-strand breaks. Oncotarget 1, 606-619.
Hayakawa, Y., Chandra, M., Miao, W., Shirani, J., Brown, J.H., Dorn, G.W., 2nd, Armstrong, R.C., and Kitsis, R.N. (2003). Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation 108, 3036-3041.
Helblingleclerc, A., Zhang, X., Topaloglu, H., Cruaud, C., Tesson, F., Weissenbach, J., Tome, F.M.S., Schwartz, K., Fardeau, M., Tryggvason, K., and Guicheney, P. (1995). Mutations in the Laminin Alpha-2-Chain Gene (Lama2) Cause Merosin-Deficient Congenital Muscular-Dystrophy. Nat Genet 11, 216-218.
Heling, A., Zimmermann, R., Kostin, S., Maeno, Y., Hein, S., Devaux, B., Bauer, E., Klovekorn, W.P., Schlepper, M., Schaper, W., and Schaper, J. (2000). Increased expression of cytoskeletal, linkage, and extracellular proteins in failing human myocardium. Circ Res 86, 846-853.
Hilfiker-Kleiner, D., Kaminski, K., Kaminska, A., Fuchs, M., Klein, G., Podewski, E., Grote, K., Kiian, I., Wollert, K.C., Hilfiker, A., and Drexler, H. (2004). Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation. Circulation 109, 2227-2233.
Hornberger, L.K., Singhroy, S., Cavalle-Garrido, T., Tsang, W., Keeley, F., and Rabinovitch, M. (2000). Synthesis of extracellular matrix and adhesion through beta(1) integrins are critical for fetal ventricular myocyte proliferation. Circ Res 87, 508-515.
Hoshijima, M., Hattori, T., Inoue, M., Araki, D., Hanagata, H., Miyauchi, A., and Takigawa, M. (2006). CT domain of CCN2/CTGF directly interacts with fibronectin and enhances cell adhesion of chondrocytes through integrin alpha5beta1. FEBS letters 580, 1376-1382.
Hsu, P.L., and Mo, F.E. (2016). Matricellular protein CCN1 mediates doxorubicin-induced cardiomyopathy in mice. Oncotarget 7, 36698-36710.
Hsu, P.L., Su, B.C., Kuok, Q.Y., and Mo, F.E. (2013). Extracellular matrix protein CCN1 regulates cardiomyocyte apoptosis in mice with stress-induced cardiac injury. Cardiovasc Res 98, 64-72.
Ichikawa, Y., Ghanefar, M., Bayeva, M., Wu, R., Khechaduri, A., Naga Prasad, S.V., Mutharasan, R.K., Naik, T.J., and Ardehali, H. (2014). Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 124, 617-630.
Ieda, M., Tsuchihashi, T., Ivey, K.N., Ross, R.S., Hong, T.T., Shaw, R.M., and Srivastava, D. (2009). Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 16, 233-244.
Igney, F.H., and Krammer, P.H. (2002). Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2, 277-288.
Jedsadayanmata, A., Chen, C.C., Kireeva, M.L., Lau, L.F., and Lam, S.C.T. (1999). Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3). J Biol Chem 274, 24321-24327.
Jeremias, I., Kupatt, C., Martin-Villalba, A., Habazettl, H., Schenkel, J., Boekstegers, P., and Debatin, K.M. (2000). Involvement of CD95/Apo1/Fas in cell death after myocardial ischemia. Circulation 102, 915-920.
Jia, Q., Dong, Q., and Qin, L. (2015). CCN: core regulatory proteins in the microenvironment that affect the metastasis of hepatocellular carcinoma? Oncotarget.
Jun, J.I., and Lau, L.F. (2010). The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12, 1249-1249.
Juric, V., Chen, C.C., and Lau, L.F. (2009). Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Mol Cell Bio 29, 3266-3279.
Kim, K.H., and Lau, L.F. (2015). CCN1 in hepatobiliary injury repair. Oncotarget 6, 34053-34054.
Kim, S.J., Kuklov, A., and Crystal, G.J. (2011). In vivo gene delivery of XIAP protects against myocardial apoptosis and infarction following ischemia/reperfusion in conscious rabbits. Life Sci 88, 572-577.
Kireeva, M.L., Lam, S.C., and Lau, L.F. (1998). Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3. J Biol Chem 273, 3090-3096.
Kireeva, M.L., Latinkic, B.V., Kolesnikova, T.V., Chen, C.C., Yang, G.P., Abler, A.S., and Lau, L.F. (1997). Cyr61 and Fisp12 are both ECM-associated signaling molecules: Activities, metabolism, and localization during development. Exp Cell Res 233, 63-77.
Kossmehl, P., Kurth, E., Faramarzi, S., Habighorst, B., Shakibaei, M., Wehland, M., Kreutz, R., Infanger, M., AH, J.D., Grosse, J., Paul, M., and Grimm, D. (2006). Mechanisms of apoptosis after ischemia and reperfusion: role of the renin-angiotensin system. Apoptosis 11, 347-358.
Krijnen, P.A., Nijmeijer, R., Meijer, C.J., Visser, C.A., Hack, C.E., and Niessen, H.W. (2002). Apoptosis in myocardial ischaemia and infarction. J Clin Pathol 55, 801-811.
Lau, L.F., Lam, S.C.T., Perbal, B., and Takigawa, M. (2005). Integrin-mediated CCN functions. In CCN Proteins: a New Family of Cell Growth and Differentiation Regulators (London: Imperial College Press), 61-79.
Lee, K., and Esselman, W.J. (2002). Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways. Free Radic Biol Med 33, 1121-1132.
Lee, P., Sata, M., Lefer, D.J., Factor, S.M., Walsh, K., and Kitsis, R.N. (2003). Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol 284, H456-H463.
Legate, K.R., and Fassler, R. (2009). Mechanisms that regulate adaptor binding to beta-integrin cytoplasmic tails. J Cell Sci 122, 187-198.
Leu, S.J., Lam, S.C., and Lau, L.F. (2002). Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem 277, 46248-46255.
Leu, S.J., Liu, Y., Chen, N., Chen, C.C., Lam, S.C., and Lau, L.F. (2003). Identification of a novel integrin alpha 6beta 1 binding site in the angiogenic Inducer CCN1 (CYR61). J Biol Chem 278, 33801-33808.
Li, J., Ye, L., Owen, S., Weeks, H.P., Zhang, Z., and Jiang, W.G. (2015). Emerging role of CCN family proteins in tumorigenesis and cancer metastasis (Review). Int J Mol Med 23.
Li, L., Takemura, G., Li, Y., Miyata, S., Esaki, M., Okada, H., Kanamori, H., Khai, N.C., Maruyama, R., Ogino, A., Minatoguchi, S., Fujiwara, T., and Fujiwara, H. (2006). Preventive effect of erythropoietin on cardiac dysfunction in doxorubicin-induced cardiomyopathy. Circulation 113, 535-543.
Lin, C.G., Chen, C.C., Leu, S.J., Grzeszkiewicz, T.M., and Lau, L.F. (2005). Integrin-dependent functions of the angiogenic inducer NOV (CCN3): implication in wound healing. J Biol Chem 280, 8229-8237.
Lin, C.G., Leu, S.J., Chen, N.Y., Tebeau, C.M., Lin, S.X., Yeung, C.Y., and Lau, L.F. (2003). CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family. J Biol Chem 278, 24200-24208.
Lin, M.T., Chang, C.C., Chen, S.T., Chang, H.L., Su, J.L., Chau, Y.P., and Kuo, M.L. (2004). Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-kappaB-dependent XIAP up-regulation. J Biol Chem 279, 24015-24023.
Lin, M.T., Chang, C.C., Lin, B.R., Yang, H.Y., Chu, C.Y., Wu, M.H., and Kuo, M.L. (2007). Elevated expression of Cyr61 enhances peritoneal dissemination of gastric cancer cells through integrin alpha(2)beta(1). J Biol Chem 282, 34594-34604.
Lipshultz, S.E., Franco, V.I., Miller, T.L., Colan, S.D., and Sallan, S.E. (2015). Cardiovascular disease in adult survivors of childhood cancer. Annu Rev Med 66, 161-176.
Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., and Gianni, L. (2004). Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56, 185-229.
Mo, F.E., and Lau, L.F. (2006). The matricellular protein CCN1 is essential for cardiac development. Circ Res 99, 961-969.
Mo, F.E., Muntean, A.G., Chen, C.C., Stolz, D.B., Watkins, S.C., and Lau, L.F. (2002). CYR61 (CCN1) is essential for placental development and vascular integrity. Molecular and cellular biology 22, 8709-8720.
Mongiat, M., Ligresti, G., Marastoni, S., Lorenzon, E., Doliana, R., and Colombatti, A. (2007). Regulation of the extrinsic apoptotic pathway by the extracellular matrix glycoprotein EMILIN2. Mol Cell Biol 27, 7176-7187.
Murray, C.J., and Lopez, A.D. (1997). Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 349, 1269-1276.
Nakamura, T., Ueda, Y., Juan, Y., Katsuda, S., Takahashi, H., and Koh, E. (2000). Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: In vivo study. Circulation 102, 572-578.
Nitobe, J., Yamaguchi, S., Okuyama, M., Nozaki, N., Sata, M., Miyamoto, T., Takeishi, Y., Kubota, I., and Tomoike, H. (2003). Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes. Cardiovasc Res 57, 119-128.
Ogasawara, J., Watanabe-Fukunaga, R., Adachi, M., Matsuzawa, A., Kasugai, T., Kitamura, Y., Itoh, N., Suda, T., and Nagata, S. (1993). Lethal effect of the anti-Fas antibody in mice. Nature 364, 806-809.
Oliviero, P., Chassagne, C., Salichon, N., Corbier, A., Hamon, G., Marotte, F., Charlemagne, D., Rappaport, L., and Samuel, J.L. (2000). Expression of laminin alpha 2 chain during normal and pathological growth of myocardium in rat and human. Cardiovasc Res 46, 346-355.
Pham, C.G., Harpf, A.E., Keller, R.S., Vu, H.T., Shai, S.Y., Loftus, J.C., and Ross, R.S. (2000). Striated muscle-specific beta(1D)-integrin and FAK are involved in cardiac myocyte hypertrophic response pathway. Am J Physiol Heart Circ Physiol 279, H2916-2926.
Porras, A., Zuluaga, S., Black, E., Valladares, A., Alvarez, A.M., Ambrosino, C., Benito, M., and Nebreda, A.R. (2004). P38 alpha mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol Biol Cell 15, 922-933.
Potts, M.B., Vaughn, A.E., McDonough, H., Patterson, C., and Deshmukh, M. (2005). Reduced Apaf-1 levels in cardiomyocytes engage strict regulation of apoptosis by endogenous XIAP. J Cell Biol 171, 925-930.
Rona, G., Chappel, C.I., Balazs, T., and Gaudry, R. (1959). An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. AMA Arch Pathol 67, 443-455.
Ross, R.S., Pham, C., Shai, S.Y., Goldhaber, J.I., Fenczik, C., Glembotski, C.C., Ginsberg, M.H., and Loftus, J.C. (1998). Beta1 integrins participate in the hypertrophic response of rat ventricular myocytes. Circ Res 82, 1160-1172.
Rother, M., Krohn, S., Kania, G., Vanhoutte, D., Eisenreich, A., Wang, X., Westermann, D., Savvatis, K., Dannemann, N., Skurk, C., Hilfiker-Kleiner, D., Cathomen, T., Fechner, H., Rauch, U., Schultheiss, H.P., Heymans, S., Eriksson, U., Scheibenbogen, C., and Poller, W. (2010). Matricellular Signaling Molecule CCN1 Attenuates Experimental Autoimmune Myocarditis by Acting as a Novel Immune Cell Migration Modulator. Circulation 122, 2688-2698.
Sarkar, S., Quinn, B.A., Shen, X.N., Dash, R., Das, S.K., Emdad, L., Klibanov, A.L., Wang, X.Y., Pellecchia, M., Sarkar, D., and Fisher, P.B. (2015). Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic. Oncotarget 6, 10712-10727.
Scarabelli, T.M., Stephanou, A., Pasini, E., Gitti, G., Townsend, P., Lawrence, K., Chen-Scarabelli, C., Saravolatz, L., Latchman, D., Knight, R., and Gardin, J. (2004). Minocycline inhibits caspase activation and reactivation, increases the ratio of XIAP to smac/DIABLO, and reduces the mitochondrial leakage of cytochrome C and smac/DIABLO. J Am Coll Cardiol 43, 865-874.
Schober, J.M., Chen, N.Y., Grzeszkiewicz, T.M., Jovanovic, I., Emeson, E.E., Ugarova, T.P., Ye, R.D., Lau, L.F., and Lam, S.C.T. (2002). Identification of integrin alpha(M)beta(2) as an adhesion receptor on peripheral blood monocytes for Cyr61 (CCN1) and connective tissue growth factor (CCN2): immediate-early gene products expressed in atherosclerotic lesions. Blood 99, 4457-4465.
Singh, K., Communal, C., Sawyer, D.B., and Colucci, W.S. (2000). Adrenergic regulation of myocardial apoptosis. Cardiovasc Res 45, 713-719.
Singh, P., Sharma, R., McElhanon, K., Allen, C.D., Megyesi, J.K., Benes, H., and Singh, S.P. (2015). Sulforaphane protects the heart from doxorubicin-induced toxicity. Free Radic Biol Med 86, 90-101.
Smeeton, J., Zhang, X., Bulus, N., Mernaugh, G., Lange, A., Karner, C.M., Carroll, T.J., Fassler, R., Pozzi, A., Rosenblum, N.D., and Zent, R. (2010). Integrin-linked kinase regulates p38 MAPK-dependent cell cycle arrest in ureteric bud development. Development 137, 3233-3243.
Souktani, R., Pons, S., Guegan, C., Bouhidel, O., Bruneval, P., Zini, R., Mandet, C., Onteniente, B., Berdeaux, A., and Ghaleh, B. (2009). Cardioprotection against myocardial infarction with PTD-BIR3/RING, a XIAP mimicking protein. J Mol Cell Cardiol 46, 713-718.
Stephanou, A., Scarabelli, T.M., Brar, B.K., Nakanishi, Y., Matsumura, M., Knight, R.A., and Latchman, D.S. (2001). Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701. J Biol Chem 276, 28340-28347.
Su, B.C., and Mo, F.E. (2014). CCN1 enables Fas ligand-induced apoptosis in cardiomyoblast H9c2 cells by disrupting caspase inhibitor XIAP. Cell Signal 26, 1326-1334.
Swain, S.M., Whaley, F.S., and Ewer, M.S. (2003). Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97, 2869-2879.
Takada, Y., Ye, X.J., and Simon, S. (2007). The integrins. Genome Biol 8, 215.
Takemura, G., and Fujiwara, H. (2007). Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49, 330-352.
Tan, W.Q., Wang, J.X., Lin, Z.Q., Li, Y.R., Lin, Y., and Li, P.F. (2008). Novel cardiac apoptotic pathway: the dephosphorylation of apoptosis repressor with caspase recruitment domain by calcineurin. Circulation 118, 2268-2276.
Taylor, J.M., Rovin, J.D., and Parsons, J.T. (2000). A role for focal adhesion kinase in phenylephrine-induced hypertrophy of rat ventricular cardiomyocytes. J Biol Chem 275, 19250-19257.
Tebbi, C.K., London, W.B., Friedman, D., Villaluna, D., De Alarcon, P.A., Constine, L.S., Mendenhall, N.P., Sposto, R., Chauvenet, A., and Schwartz, C.L. (2007). Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin's disease. J Clin Oncol 25, 493-500.
Todorovic, V., Chen, C.C., Hay, N., and Lau, L.F. (2005). The matrix protein CCN1 (CYR61) induces apoptosis in fibroblasts. J Cell Biol 171, 559-568.
Tong, X., Xie, D., O'Kelly, J., Miller, C.W., Muller-Tidow, C., and Koeffler, H.P. (2001). Cyr61, a member of CCN family, is a tumor suppressor in non-small cell lung cancer. J Biol Chem 276, 47709-47714.
Toyokuni, S., Tanaka, T., Hattori, Y., Nishiyama, Y., Yoshida, A., Uchida, K., Hiai, H., Ochi, H., and Osawa, T. (1997). Quantitative immunohistochemical determination of 8-hydroxy-2'-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab Invest 76, 365-374.
van Loo, G., van Gurp, M., Depuydt, B., Srinivasula, S.M., Rodriguez, I., Alnemri, E.S., Gevaert, K., Vandekerckhove, J., Declercq, W., and Vandenabeele, P. (2002). The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 9, 20-26.
Volpert, O.V., Zaichuk, T., Zhou, W., Reiher, F., Ferguson, T.A., Stuart, P.M., Amin, M., and Bouck, N.P. (2002). Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 8, 349-357.
Von Hoff, D.D., Layard, M.W., Basa, P., Davis, H.L., Jr., Von Hoff, A.L., Rozencweig, M., and Muggia, F.M. (1979). Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91, 710-717.
Wang, K., Zhang, J., Liu, J., Tian, J., Wu, Y., Wang, X., Quan, L., Xu, H., Wang, W., and Liu, H. (2013). Variations in the protein level of Omi/HtrA2 in the heart of aged rats may contribute to the increased susceptibility of cardiomyocytes to ischemia/reperfusion injury and cell death : Omi/HtrA2 and aged heart injury. Age 35, 733-746.
Wencker, D., Chandra, M., Nguyen, K., Miao, W., Garantziotis, S., Factor, S.M., Shirani, J., Armstrong, R.C., and Kitsis, R.N. (2003). A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111, 1497-1504.
Wollert, K.C., Heineke, J., Westermann, J., Ludde, M., Fiedler, B., Zierhut, W., Laurent, D., Bauer, M.K., Schulze-Osthoff, K., and Drexler, H. (2000). The cardiac Fas (APO-1/CD95) Receptor/Fas ligand system : relation to diastolic wall stress in volume-overload hypertrophy in vivo and activation of the transcription factor AP-1 in cardiac myocytes. Circulation 101, 1172-1178.
Yakubenko, V.P., Yadav, S.P., and Ugarova, T.P. (2006). Integrin alpha(D)beta(2), an adhesion receptor up-regulated on macrophage foam cells, exhibits multiligand-binding properties. Blood 107, 1643-1650.
Yamamoto, K., Dang, Q.N., Kennedy, S.P., Osathanondh, R., Kelly, R.A., and Lee, R.T. (1999). Induction of tenascin-C in cardiac myocytes by mechanical deformation. Role of reactive oxygen species. J Biol Chem 274, 21840-21846.
Yang, G.P., and Lau, L.F. (1991). Cyr61, product of a growth factor-inducible immediate early gene, is associated with the extracellular matrix and the cell surface. Cell Growth Differ 2, 351-357.
Yang, Q.H., Church-Hajduk, R., Ren, J., Newton, M.L., and Du, C. (2003). Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 17, 1487-1496.
Yoshida, Y., Togi, K., Matsumae, H., Nakashima, Y., Kojima, Y., Yamamoto, H., Ono, K., Nakamura, T., Kita, T., and Tanaka, M. (2007). CCN1 protects cardiac myocytes from oxidative stress via beta1 integrin-Akt pathway. Biochem Biophys Res Commun 355, 611-618.
Zhu, W., Soonpaa, M.H., Chen, H., Shen, W., Payne, R.M., Liechty, E.A., Caldwell, R.L., Shou, W., and Field, L.J. (2009). Acute doxorubicin cardiotoxicity is associated with p53-induced inhibition of the mammalian target of rapamycin pathway. Circulation 119, 99-106.