簡易檢索 / 詳目顯示

研究生: 鄭靈珍
Cheng, Dorcas
論文名稱: 以Brewster Angle Microscopy探討氣/液界面上DPPC/Albumin混合單分子層的行為
An Investigation of Mixed DPPC/Albumin Monolayer Behavior at Air/Liquid Interfaces by Brewster Angle Microscopy
指導教授: 張鑑祥
Chang, Chien-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 147
中文關鍵詞: 遲滯現象混合單層氣/液界面蛋白質/脂質相互作用力
外文關鍵詞: protein/lipid interaction, mixed monolaye, Brewster angle microscopy, air/water interface, hysteresis behavior
相關次數: 點閱:112下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用Brewster angle microscopy (BAM)配合表面壓-面積與表面電位-面積等溫線的分析,探討於動態壓縮/擴張氣液界面面積的情況下,氣液界面上DPPC/albumin混合分子層的行為。在第一次壓縮混合分子層的過程中,BAM的影像顯示吸附於界面上的albumin分子層,並未能完全與分佈於氣液界面上的DPPC單分子層混合。而在albumin的存在下,氣液界面上的DPPC分子會聚集成亮點domains,或以固態相的狀態存在。此外,由BAM也可觀察到明亮且均勻的albumin聚集domains。
    在空氣/10 ppm albumin溶液的氣液界面上,於第二及第三次壓縮DPPC/albumin混合分子層的過程中,可發現扭曲的DPPC 液體-凝縮相 domains。這結果顯示DPPC與albumin雖然未能達到分子層級的混合,但albumin的存在明顯造成界面上DPPC分子聚集行為的改變。
    在第二及第三次壓縮混合分子層的過程中,若進一步壓縮分子層至表面壓20 mN/m左右,由BAM可觀察到網狀結構的形成,而此結構的特性會受到albumin濃度的影響。在較高的albumin濃度下,會形成較緊密的網狀結構;反之,所形成的網狀結構則較為鬆散。網狀結構的形成,代表albumin會對DPPC固態相的形態造成改變。
    此外,在連續壓縮/擴張分子層的過程中,利用BAM可觀察到界面上DPPC自由分子的減少。在相同表面壓下,於第三次壓縮過程中所出現富含DPPC的domains,明顯比在第二次壓縮過程中所出現的數量還少。
    實驗結果顯示, DPPC於氣液界面上的界面活性受到albumin的抑制,可能與DPPC自由分子的損失,以及形成不規則的聚集domains有關。

    The behavior of mixed DPPC/albumin layers at air/liquid interfaces under dynamic compression-expansion conditions has been investigated by the analysis of surface pressure-area isotherms with Brewster angle microscopy (BAM) observations. During the initial first compression stage, BAM images revealed that the adsorbed protein layer was not mixed homogeneously with the spread DPPC monolayer. DPPC domains seemed to aggregate into bright dots or become solid state in the presence of proteins. The bright homogeneous protein islands were also observed.
    During the second and third compression stages, distorted DPPC liquid condensed domains were observed in the mixed spread DPPC/adsorbed albumin layer on a 10 ppm albumin subphase. It indicated that although albumin and DPPC were not mixed very well in the molecular scale, the existence of albumin apparently disturbed the packing (characteristic length) of DPPC molecules at the interface.
    For further compression in the second and third compression stages, one could observe the formation of network structures at ~ 20 mN/m. The characteristic of network structures also depended on the bulk albumin concentrations. Taut and slack network structures were detected at higher and lower albumin concentrations, respectively. The formation of network structures implied the disruption of the DPPC solid state morphology by albumin.
    The decrease of free DPPC molecules at the interface upon consecutive compression/expansion cycles was supported by BAM observations. At same surface pressures, it appeared that the fraction of DPPC-rich domains observed during the third compression stage decreased in comparison to that observed during the second compression stage.
    In general, the results indicated that the albumin inhibition of DPPC surface active at the interface may be contributed to the decrease of free DPPC molecule fraction at the interface and the formation of the other irregular aggregated at the interface, which therefore change the morphology of mixed layer.

    中文摘要i Abstract ii Table of Contents iv List of Tablesvi List of Figures vii Chapter 1 Introduction 1 1.1. Preface 1 1.2. Literature Survey 2 1.2.1. Protein Adsorption Behavior at Air/Liquid Interfaces 2 1.2.2. DPPC Monolayer Behavior at Air/Liquid Interfaces 5 1.2.3. Plasma Proteins/Phospholipids Interactions 7 Chapter 2 Materials and Methods 9 2.1. Materials 9 2.2. Instruments 10 2.3. Methods 13 Chapter 3 Results and Discussion 22 3.1. DPPC Monolayer Hysteresis Behavior 22 3.2. Adsorbed Albumin Film Behavior 25 3.3. Hysteresis Behavior of Mixed Spread DPPC/Adsorbed Albumin Films 30 3.3.1. With post-DPPC Collapse compression for the First Cycle 30 3.3.2. With pre-DPPC Collapse compression for the First Cycle 43 3.4. Spread Albumin Film Behavior 53 3.5. Hysteresis Behavior of Mixed Spread DPPC/Spread Albumin Films 55 3.5.1. Spread Albumin Film First 55 3.5.2. Spread DPPC Film First 55 Chapter 4 Conclusions and Suggestions 126 4.1. Conclusions 126 4.2. Suggestions 129 References 130 Acknowledgements 146 Vita 147

    Bendedouch, D., and Chen, S.H., “Structure and interparticle interactions of bovine serum-albumin in solution studied by small-angle neutron-scattering,” J. Phys. Chem. B 87, 1473, 1983.
    Bolanos-Garcia, V.M, Ramos, S., Castillo R, Xicohtencatl-Cortes, J., and Mas-Oliva, J., “Monolayers of apolipoproteins at the air/water interface,” J. Phys. Chem. B 105, 5757, 2001.
    Brancato, A., and Serfis, A., “Incorporation of blood-clotting proteins into phospholipids Langmuir monolayers: A fluorescence microscopy study,” J. Colloid Interface Sci. 239, 139, 2001.
    Brezesinski, G., Dietrich, A., Struth, B., Böhm, C., Bouwman, W.G., Kjaer, K., and Möhwald, H., “Influence of ether linkages on the structure of double-chain phospholipid monolayers,” Chem. Phys. Lipids 76, 145, 1995.
    Brown, J.R., and Shockley, P., “Lipid-Protein Interactions”, Jost, P., and Griffith, O.H., eds., Wiley-Liss, Inc., New York. 25-68, 1982.
    Carter, D.C., He, X.M., Munson, S.H., Twigg, P.D., Gernert, K.M., Broom, M.B., and Miller, T.Y., “Three-dimensional structure of human serum albumin,” Science 24, 1195, 1989.
    Chang, C.H., Yu, S.D., Chuang, T.K., and Liang, C.N., “Roles of �-globulin in the dynamic interfacial behavior of mixed dipalmitoyl phosphtidylcholine/�-globulin monolayers at air/liquid interfaces,” J. Colloid Interface Sci. 227, 461, 2000.
    Cheng, C.C., and Chang, C.H., “Retardation effect of tyloxapol on inactivation of dipalmitoyl phosphatidylcholine surface activity by albumin,” Langmuir 16, 437, 2000.
    Cho, D., Narsimhan, G., and Franses, E.I., “Adsorption dynamics of native and alkylated derivatives of bovine serum albumin at air/water interfaces,” J. Colloid Interface Sci. 178, 348, 1996.
    Cho, D., and Cornec, M., “Adsorption behavior of a globular protein with a monoglyceride monolayer spread on the aqueous surface,” Korean J. Chem. Eng. 16, 371, 1999.
    Clark, D.C., Smith, L.J., and Wilson, D.R., “A spectroscopic study of the conformational properties of foamed bovine serum-albumin,” J. Colloid Interface Sci. 121, 136, 1988.
    Coke, M., Wilde, P.J., Russell, E.J., and Clark, D.C., “The influence of surface-composition and molecular-diffusion on the stability of foams formed from protein surfactant mixtures,” J. Colloid Interface Sci. 138, 489, 1990.
    Cornec, M., and Narsimhan, G., “Adsorption and exchange of beta-lactoglobulin onto spread monoglyceride monolayers at the air-water interface,” Langmuir 16, 1216, 2000.
    Crane, J.M., Putz, G., and Hall, S.B., “Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures,” Biophys. J. 77, 3134, 1999.
    Cruz, A., Worthman, L.A., Serrano, A.G., Casals, C., Keough, K.M.W., and Pérez-Gil, J., “Microstructure and dynamic surface properties of surfactant protein SP-B/dipalmitoylphosphatidylcholine interface films spread from lipid-protein bilayers,” Eur. Biophys. J. 29, 204, 2000.
    Damodaran, S., and Song, K.B., “Kinetics of adsorption of protein at interfaces: Role of protein conformation in diffusional adsorption,” Biochim. Biophys. Acta 954, 253, 1988.
    de Feijter, J.A., and Benjamins, J., “Soft-particle model of compact macromolecules at interfaces,” J. Colloid Interface Sci. 90, 289, 1982.
    de Mul, M.N.G., and Mann, J.A. Jr., “Determination of the thickness and optical properties of a Langmuir film from the domain morphology by Brewster angle microscopy,” Langmuir 14, 2455, 1998.
    Dickinson, E., and Matsumura, Y., “Proteins at liquid interfaces: role of the molten globule state,” Colloids Surf. B 3, 1, 1994.
    Discher, B.M., Maloney, K.M., Schief, W.R., Granger, D.W., Vogel, V., and Hall, S.B., “Lateral phase separation in interfacial films of pulmonary surfactant,” Biophys. J. 71, 2583, 1996.
    Eaglesham, A., Herrington, T.M., and Penfold, J., “A neutron reflectivity study of a spread monolayer of bovine serum-albumin,” J. Colloid Interface Sci. 65, 9, 1992.
    Eley, D.D., and Hegde, D.G., “Protein interactions with lecithin and cephalin monolayers,” J. Colloid Interface Sci. 11, 445, 1956.
    Fainerman, V.B., Zhao, J., Vollhardt, D., Makievski, A.V., and Li, J.B., “Dynamics of �-lactoglobulin penetration into langmuir monolayers of 2D condensating phospholipids,” J. Phys. Chem. B 103, 8998, 1999.
    Fuchimukai, T., Fujiwara, T., Takahashi, A., and Enhorning, G., “Aritificial pulmonary surfactant inhibited by proteins,” J. Appl. Physiol. 62, 429, 1987.
    Gaines, G.L., “Insoluble monolayers at liquid-gas interfaces,” Interscience, New York. 75, 1966.
    Galston, M., and Shah, D.O., “Surface properties and hysteresis of dipalmitoyllecthin in relation to the alveolar lining layer,” Biochim. Biophys. Acta 137, 255, 1967.
    Gaub, H.E., Moy, V.T., and McConnell, H.M., “Reversible formation of plastic two-dimensional lipid crystals,” J. Phys. Chem. 90, 1721, 1986.
    Gericke, A., Flach, C.R., and Mendelsohn, R., “Structure and orientation of lung surfactant SP-C and L-�-dipalmitoylphosphatidylcholine in aqueous monolayers,” Biophys. J. 73, 492, 1997.
    Goerke, J., and Clements, J.A., “Alveolar surface tension and lung surfactant,” in Handbook of Physiology. The Respiratory System. III. Mackelm, P.T., and Mead, J., eds., American Physiological Society, Washington, D.C., 247, 1985.
    Graham, D.E., and Philips, M.C., “Proteins at liquid interfaces. II. Adsorption isotherms,” J. Colloid Interface Sci. 70, 415, 1979.
    Györvary, E., Albers, W.M., and Peltonen, J., “Miscibility in binary monolayers of phospholipids and linker lipid,” Langmuir 15 2516, 1999.
    Heckl, W.M., Zaba, B.N., and Möhwald, H., “Interactions of cytochrome b5 and c with phospholipid monolayers,” Biochim. Biophys. Acta 903, 166, 1987.
    Helm, C.A., Möhwald, H., Kjaer, K., and Als-Nielsen, J., “Phospholipid monolayer density distribution perpendicular to the water-surface - a synchrotron x-ray reflectivity study,” Europhys. Lett. 4, 697, 1987.
    Hénon, S., and Meunier, J., “Phase-transitions in Gibbs films - star textural defects in tilted mesophases,” J. Chem. Phys. 98, 9148, 1993.
    Hénon, S., and Meunier, J., “Microscope at the Brewster angle direct observation of 1st-order phase-transitions in monolayers,” J., Rev. Sci. Instrum. 62, 936, 1991.
    Holm, B.A., Notter, R.H., and Finkelstein, J.N., “Surface property changes from interactions of albumin with natural surfactant and extracted lung lipids,” Chem. Phys. Lipids 38, 287, 1985.
    Holm, B.A., and Notter, R.H., “Effects of hemoglobin and cell membrane lipids on pulmonary surfactant activity,” J. Appl. Physiol. 63, 1434, 1987.
    Holm, B.A., Enhorning, G., and Notter, R.H., “A biophysical mechanism by which plasma proteins inhibit lung surfactant activity,” Chem. Phys. Lipids 49, 49, 1988.
    Holm, B.A., “Surfactant inactivation in adult respiratory distress syndrome,” in Pulmonary Surfactant: from Molecular Biology to Clinical Practice, Robertson, B., Van Golde, L.M.G., and Batenburg, J.J., eds., Chapter 27, Elsevier Science, 1992.
    Holm, B.A., Wang, Z., and Notter, R.H., “Multiple mechanism of lung surfactant inhibition,” Pediatric Research 46, 1, 1999.
    Hönig, D.G., and Möbius, D., “Direct visualization of monolayers at the air-water-interface by brewster-angle microscopy,” J. Phys. Chem. 95, 4590, 1991.
    Hossain, M.M., Yoshida, M., Iimura, K., Suzuki, N., and Kato, T., “Phase transition in adsorbed monolayers of 2-hydroxyethyl laurate at the air-water interface,” Colloids Surf. A 171, 105, 2000a.
    Hossain, M.M., Yoshida, M., and Kato, T., “Higher-order structure formation in adsorbed monolayers at aqueous solution surfaces studied by Brewster angle microscopy,” Langmuir 16, 3345, 2000b.
    Hossain, M.M., Islam, M.N., Okano, T., and Kato, T., “Condensed structure formation in mixed monolayers of anionic surfactants and 2-hydroxyethyl laurate at the air-water interface,” Colloids Surf. A 205, 249, 2002.
    Ikegami, M., Agata, Y., Elkrady, T., Hallman, M., Berry, D., and Jobe, A, “Comparison of four surfactants: in vitro surface properties and responses of preterm lambs to treatment at birth,” Pediatrics 79, 585, 1987.
    Ivanova, M.G., Verger, R., Bois, A.G., and Panaiotov, I., “Proteins at the air-water-interface and their inhibitory effects on enzyme lipolysis,” Colloids Surf. A 54, 279, 1991.
    Jones, M.N., and Chapman, D., “Micelles, Monolayer, and Biomembranes,” Wiley-Liss, Inc., New York, 29, 1995.
    Jyoti, A., Prokop, R.M., Li, J., Vollhardt, D., Kwok, D.Y., Miller, R., Mohwald, H., and Neumann, A.W., “An investigation of the compression rate dependence on the surface pressure-surface area isotherm for a dipalmitoyl phosphatidylcholine monolayer at the air/water interface,” Colloids Surf. A. 116, 173, 1996.
    Keller, D.J., Korb, J.P., and McConnell, H.M., “Theory of shape transitions in two-dimensional phospholipid domains,” J. Phys. Chem. 91, 6417, 1987.
    Keough, K.M.W., Parsons, C.S., Phang, P.T., and Tweeddale, M.G., “Interactions between plasma proteins and pulmonary surfactant: surface balance studies,” Can. J. Physiol. Pharmacol. 33, 1166, 1988.
    Keough, K.M.W., Parsons, C.S., and Tweeddale, M.G., “Interactions between plasma proteins and pulmonary surfactant: pulsating bubble studies,” Can. J. Physiol. Pharmacol. 67, 663, 1989.
    Klopfer, K.J., and Vanderlick, T.K., “Isotherms of dipalmitoyl phosphatidylcholine (DPPC) monolayers: features revealed and features obscured,” J. Colloid Interface Sci. 182, 220, 1996.
    Kuo, R.R., Chang, C.H., Yang, Y.M., and Maa, J.R., “Induced removal of dipalmitoyl phosphatidylcholine by the exclusion of fibrinogen from compressed monolayers at air/liquid interfaces,” J. Colloid Interface Sci. 257, 108, 2003.
    Lee, K.Y.C., Lipp, M.M., Zasadzinski, J.A., and Waring, A.J., “Effects of lung surfactant specific protein SP-B and model SP-B peptide on lipid monolayers at the air-water interface,” Colloids Surf. A. 128, 225, 1997.
    Li, J., Chen, H., Wu, J., Zhao, J., and Miller, R., “The structure and dynamic properties of mixed adsorption and penetration layers of �-dipalmitoylphatidylcholine/�-lactoglobulin at water/fluid interface,” Colloids Surf. B. 15, 289, 1999.
    Li, J.B., Krägel, J., Makievski, A.V., Fainermann, V.B., Miller, R., and Möhwald, H., “A study of mixed phospholipid/beta-casein monolayers at the water vertical bar air surface,” Colloids Surf. A 142, 355, 1998.
    Lipp, M.M., Lee, K.Y.C., Waring, A., and Zasadzinski, J.A., “Fluorescence, polarized fluorescence, and Brewster angle microscopy of palmitic acid and lung surfactant protein B monolayers,” Biophys. J. 72, 2783, 1997.
    Lu, J.R., and Su, T.J., “Adsorption of serum albumins at the air/water interface,” Langmuir 15, 6975, 1999.
    Magdassi, S., “Surface Activity of Proteins,” Marcel Dekker, New York. 2-12, 1996.
    McConlogue, C.W., and Vanderlick, T.K., “A close look at domain formation in DPPC monolayers,” Langmuir 13, 7158, 1997.
    McConnell, H.M., and Moy, V.T., “Shapes of finite two-dimensional lipid domains,” J. Phys. Chem. 92, 4520, 1988.
    McConnell, H.M., “Structures and transitions in lipid monolayers at the air-water interface,” Annu. Rev. Phys. Chem. 42, 171, 1991.
    Melzer, V., and Vollhardt, D., “Formation of condensed phase patterns in adsorption layers,” Phys. Rev. Lett. 76, 3770, 1996.
    Miller, R., Policova, Z., Sedev, R., and Neumann, A.W., “Relaxation behavior of human albumin adsorbed at the solution/air interface,” Colloids Surf. A. 76, 179, 1993.
    Möckel, D., Staude, E., and Guiver, M.D., “Static protein adsorption, ultrafiltration behavior and cleanability of hydrophilized polysulfone membranes,” J. Membrane Sci. 158, 63, 1999.
    Möhwald, H., Haas, H., and Kirsten, S., “Pattern formation of molecules adsorbing on lipid monolayers,” in Random Fluctuations and Pattern Growth: Experiments and Models,” Stanley, H.E., and Ostrowsky, N., eds., NATO/ASI Series E, Cargese, France, 110, 1988.
    Möhwald, H., “Phospholipid monolayers,” in Structure and Dynamics of Membranes: From Cells to Vesicles,” Elsevier Science B.V., Amsterdam, 161-211, 1995.
    Moy, V.T., Keller, D.J., and McConnell, H.M., “Molecular order in finite two-dimensional crystals of lipid at the air water interface,” J. Phys. Chem. 92, 5233, 1988.
    Nag, K, Boland, C., Rich, N.H., and Keough, K.M.W., “Epifluorescence microscopic observation of monolayers of dipalmitoylphosphatidylcholine - dependence of domain size on compression rates,” Biochim. Biophys. Acta 1068, 157, 1991.
    Nag, K., Perez-Gil., J., Cruz, A., Rich, N.H., and Keough, K.M.W., “Spontaneous formation of interfacial lipid-protein monolayers during adsorption from vesicles,” Biophys. J. 71, 1356, 1996a.
    Nag, K., Perez-Gil., J., Cruz, A., and Keough, K.M.W., “Fluorescently labeled pulmonary surfactant protein C in spread phospholipid monolayers,” Biophys. J. 71, 246, 1996b.
    Notter, R.H., Holcomb, S., and Mavis, R.D., “Dynamic surface-properties of phosphatidylglycerol-dipalmitoyl phosphatidyl choline mixed films,” Chem. Phys. Lipids 27, 305, 1980a.
    Notter, R.H., Holcomb, S., Mavis, R.D., and Tabak, S.A., “Post-collapse dynamic surface pressure relaxation in binary surface films containing dipalmitoyl phosphatidylcholine,” J. Colloid Interface Sci. 74, 370, 1980b.
    Notter, R.H., Taubold, R., and Mavis, R.D., “Hysteresis in saturated phospholipids films and its potential relevance for lung surfactant function in vivo,” Exp. Lung Res. 3, 109, 1982.
    Notter, R.H., “Surface chemistry of pulmonary surfactant: the role of individual components,” in Pulmonary Surfactant, Robertson, B., van Golde, L.G.M., and Battenburg, J.J., eds., Elsevier, Amsterdam, 17-53, 1984.
    Overbeck, G.A., Hönig, D., and Möbius, D., “Visualization of 1st-order and 2nd-order phase-transitions in eicosanol monolayers using brewster-angle microscopy,” Langmuir 9, 555, 1993.
    Pallas, N.R., and Pethica, B.A., “Liquid-expanded to liquid-condensed transitions in lipid monolayers at the air water interface,” Langmuir 1, 509, 1985.
    Peters, T., “Serum-albumin,” Adv. Protein Chem. 37, 161, 1985.
    Philips, M.C., and Hauser, H., “Spreading of solid glycerides and phospholipids at the air-water interface,” J. Colloid Interface Sci. 49, 31, 1974.
    Polverini, E., Arisi, S., Cavatorta, P., Berzina, T., Cristofolini, L., Fasano, A., Riccio, P., and Fontana, M.P., “Interaction of myelin basic protein with phospholipids monolayers: mechanism of protein penetration,” Langmuir 19, 872, 2003.
    Riviere, S., Henon, S., Meunier, J., Schwartz, D. K, Tsao, M.W., and Knobler, C.M.J., “Textures and phase-transitions in Langmuir monolayers of fatty-acids - a comparative Brewster angle microscope and polarized fluorescence microscope study,” Chem. Phys. 101, 10045, 1994.
    Riviere, C.S., Henon, S., and Meunier, J., “Phase transitions in Langmuir films of fatty acids: L(2)-L(2)'-L(2)' triple point and order of the transitions,” J. Phys. Rev. E 54, 1683, 1996.
    Rodríguez Patino, J.M., Carrera Sánchez, C., and Rodríguez Niño, M.R., “Is Brewster angle microscopy a useful technique to distinguish between isotropic domains in �-casein-monoolein mixed monolayers at the air-water interface?” Langmuir 15, 4777, 1999a.
    Rodriguez Patino, J.M., Carrera Sánchez, C., and Rodríguez Niño, M.R., “Analysis of �-casein-monopalmitin mixed films at the air-water interface,” J. Agric. Food Chem. 47, 4998, 1999b.
    Rodriguez Patino, J.M., Rodriquez Nino, M.R., Carrera Sánchez, C., and Fernández, M.C., “Whey protein isolate-monoglyceride mixed monolayers at the air-water interface. Structure, morphology and interactions,” Langmuir 17, 7545, 2001.
    Rodriguez Patino, J.M., Rodriquez Nino, M.R., and Carrera Sanchez, C., “Dynamic properties of �-casein-monoglyceride mixed films at the air-water interface. Long term relaxation phenomena,” Langmuir 18, 8455, 2002.
    Schürch, S., “Surface tension at low lung volumes: dependence on time and alveolar size,” Respir. Physiol. 48, 339, 1982.
    Schwartz, D.K., and Knobler, C.M., “Direct observations of transitions between condensed Langmuir monolayer phases by polarized fluorescence microscopy,” J. Phys. Chem. 97, 8849, 1993.
    Seeger, W., Stöhr, G., Wolf, H.R.D., and Neuhof, H., “Alteration of surfactant function due to protein leakage: special interaction with fibrin monomer,” J. Appl. Physiol. 58, 326, 1985.
    Seul, M., and Sammon, M., “Competing interactions and domain-shape instabilities in a monomolecular film at an air-water-interface,” Phys. Rev. Lett. 64, 1903, 1990.
    Seul, M., and Chen, V.S., “Isotropic and aligned stripe phases in a monomolecular organic film,” Phys. Rev. Lett. 70, 1658, 1993.
    Seul, M., and Andelman, D., “Domain shapes and patterns the phenomenology of modulated phases,” Science 267, 476, 1995.
    Smith, R.D., and Berg, J.C., “The collapse of surfactant monolayers at the air-water interface,” J. Colloid Interface Sci. 74, 273, 1980.
    Snik, A.F.M., Kruger, A.J., and Joss, P., “Dynamical behavior of monolayers of dipalmityol lecithin and cholesterol,” J. Colloid Interface Sci. 66, 435, 1978.
    Stine, K.J., and Stratmann, D.T., “Fluorescence microscopy study of langmuir monolayers of stearylamine,” Langmuir 8, 2509, 1992.
    Sundaram, S., Ferri, J.K., Vollhardt, D., and Stebe, K.J., “Surface phase behavior and surface tension evolution for lysozyme adsorption onto clean interfaces and into DPPC monolayers: theory and experiment,” Langmuir 14, 1208, 1998.
    Tabak, S.A., and Notter, R.H., “Effect of plasma proteins on the dynamic �-A characteristic of saturated phospholipids films,” J. Colloid Interface Sci. 59, 293, 1977a.
    Tabak, S.A., Notter, R.H., Ultman, U.S., and Dinh, S.M., “Relaxation effects in the surface pressure behavior of dipalmitoyl lecithin,” J. Colloid Interface Sci. 60, 117, 1977b.
    Taneva, S.G., and Keough, K.M.,W., “Pulmonary surfactant proteins SP-B and SP-C in spread monolaayers at the air-water interface. II. Monolayers of pulmonary surfactant protein SP-C and phospholipids,” Biophys. J. 66, 1149, 1994a.
    Taneva, S.G., and Keough, K.M.W., “Dynamic surface properties of pulmonary surfactant proteins SP-B and SP-C and their mixtures with dipalmitoylphosphatidylcholine,” Biochemistry 33, 14660, 1994b.
    Teer, E., Knobler, C.M., Lautz, C., Wurlitzer, S., Kildae, J., and Fischer, T.M.J., “Optical measurements of the phase diagrams of Langmuir monolayers of fatty acid, ester, and alcohol mixtures by Brewster-angle microscopy,” Chem. Phys. 106, 1913, 1997.
    Tripp, B.C., Magda, J.J., and Andrade, J.D., “Adsorption of globular proteins at the air/water interface as measured via dynamic surface tension: concentration dependence, mass-transfer considerations, and adsorption kinetics,” J. Colloid Interface Sci. 173, 16, 1995.
    Trurnit, H.J., “A theory and method for the spreading of protein monolayers,” J. Colloid Interface Sci. 15, 1, 1960.
    Turcotte, J.G., Sacco, A.M., Steim, J.M., and Notter, R.H., “Chemical synthesis and surface properties of an analog of the pulmonary surfactant dipalmitoyl phosphatidylcholine,” Biochim. Biophys. Acta 488, 235, 1977.
    Uredat, S., and Findenegg, G.H., “Domain formation in Gibbs monolayers at oil/water interfaces studied by Brewster angle microscopy,” Langmuir 1999, 15, 1108.
    Vogel, V. and Möbius, D., “Local surface potentials and electric dipole moments of lipid monolayers contributions of the water/lipid and the lipid/air interfaces,” J. Colloid Interface Sci. 126, 408, 1988.
    Vollhardt, D., and Melzer, V., “Phase transition in adsorption layers at the air-water interface: bridging to Langmuir monolayers,” J. Phys. Chem. B 101, 3370, 1997.
    von Nahmen, A., Schenk, M., Sieber, M., and Amrein, M., “The structure of a model pulmonary surfactant as revealed by scanning force microscopy,” Biophys. J. 72, 463, 1997.
    Wang, Z.D., and Notter, R.H., “Additivity of protein and nonprotein inhibitors of lung surfactant activity,” Am. J. Resp. Crit. Care 158, 28, 1998.
    Wang, X., Zhang, H., Cui, G., and Li, J., “Structure characterization and stability of mixed lipid/protein monolayer at the air/water interface,” J. Molecular Liquids 90, 149, 2001.
    Weidemann, G., and Vollhardt, D., “Long range tilt orientational order in phospholipids monolayers: a comparison of the order in the condensed phases of dimyristoylphosphatidylethanolamine and dipalmitoylphosphatidylcholine,” Colloids Surf. A 100, 187, 1995.
    Weis, R.M., and McConnell, H.M., “Two-dimensional chiral crystals of phospholipid,” Nature 310, 47, 1984.
    Weis, R.M., and McConnell, H.M., “Cholesterol stabilizes the crystal-liquid interface in phospholipid monolayers,” J. Phys. Chem. 89, 4453, 1985.
    Wu, F., Gericke, A., Flach, C.R., Mealy, T.R., Seaton, B.A., and Mendelsohn, R., “Domain structure and molecular conformation in aqueous monolayers of annexin V dimyristoylphosphatidic acid Ca2+ complexes investigated by Brewster angle microscopy and IR reflection absorption spectroscopy,” Biophy. J. 74, 3273, 1998.
    Zhang, H., Wang, X., Cui, G., and Li, J., “Stability investigation of the mixed DPPC/protein monolayer at the air-water interface,” Colloids Surf. A 175, 77, 2000.
    Zhang, H., Cui, G., and Li, J., “Morphological investigation of mixed protein/phospholipid monolayers,” Colloids Surf. A 201, 123, 2002.
    Zhao, J., Vollhardt, D., Brezesinski, G., Siegel, S., Wu, J., Li, J.B., and Miller, R., “Effect of protein penetration into phosholipid monolayers: morphology and structure,” Colloids and Surf. A 171, 175, 2000.

    下載圖示 校內:立即公開
    校外:2003-07-17公開
    QR CODE