簡易檢索 / 詳目顯示

研究生: 陳俊諺
Chen, Chun-Yen
論文名稱: 相異製程之高電壓金氧半元件其熱載子可靠度之研究
Analysis on Hot Carrier Reliability for High Voltage MOS Device with Different Processes
指導教授: 陳志方
Chen, Jone-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 74
中文關鍵詞: 高電壓金氧半場效電晶體熱載子退化機制基板電流Si recess 結構
外文關鍵詞: High-Voltage MOSFETs, hot carrier degradation mechanism, substrate current, Si recess structure
相關次數: 點閱:98下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們主要探討的元件為高電壓金氧半場效電晶體(HV- MOSFETs),其中針對不同的Si recess深度對於熱載子可靠度方面的探討。在本篇論文裡,我們有三種不同Si recess 深度的元件,最深到最淺的範圍約為15奈米。
    首先,描述高電壓金氧半場效電晶體的結構、優缺點以及應用的領域,接著介紹熱載子效應的基本原理以及降低熱載子效應的方法。
    之後介紹本論文中的量測手法及偏壓條件的設定,並且說明Si recess結構形成的原因。在元件基本電特性的方面,我們將會呈現ID-VG、ID-VD以及ISUB-VG的量測結果。
    本文研究之主要內容為基板電流對於熱載子退化量大小的研究。根據我們實驗量測的結果意外的發現,這種帶有Si recess結構的元件有著異常的熱載子退化。一般來說,基板電流越大,元件的熱載子退化量也應該要越大。但我們量測的退化趨勢,卻是基板電流越大,元件的熱載子退化卻越小。
    針對這個異常的退化,我們透過實驗數據的分析以及電腦輔助模擬軟體(TCAD),可以發現造成元件的基板電流較大的原因是它的內部電場 (electric field)和衝擊游離化率 (impact ionization rate)都較大。但造成熱載子退化量較小的方面我們提出了三種原因來解釋這個異常現象。第一有可能是較深的Si recess 深度,因為過度蝕刻的影響造成原本元件spacer下方產生較多的缺陷才會造成退化量異常的變大。其二,是因為結構上的差異造成這異常的退化。第三,我們用電腦輔助模擬軟體,模擬不同Si recess 深度元件的電流路徑分佈,可以發現較深元件的電流路徑相較於較淺的元件還要流的更貼近於表面(Si/SiO2),因此它受缺陷的影響較大,才導致它的退化量異常的上升。根據我們的量測與模擬結果,可以發現Si recess對於元件的基本電特性影響不大,但在熱載子可靠度方面卻是不容小覷的。因為Si recess 深度增加,對元件的退化量是上升的。因此,在元件的製程中想辦法降低Si recess 結構的產生是不可避免的問題。

    In this thesis, we investigated devices is High Voltage MOSFETs (HV-MOSFETs), and analysis hot carrier reliability for different Si recess depth. In our study, we have HV-MOSFETs with three different Si recess depth. The deepest to the shallowest range is about 15 nm.
    First, we introduced the structure of HV-MOSFETs, its advantage and disadvantage. Moreover, hot carrier effect mechanism and reduce hot carrier effect methods were be introduced.
    Then we introduced the measurement method and the setting of bias condition in this thesis, and explained the formation reason of Si recess structure. We will present the measurement results for ID-VG, ID-VD and ISUB-VG in terms of the basic electrical characteristics of the HV-MOSFETs.
    The main contents of this thesis are the study of substrate current for the amount of hot carrier degradation. Based on the unexpected results of our experimental measurements, this device with a Si recess structure has an abnormal hot carrier degradation. In general, the larger substrate current, the device hot carrier degradation should also be larger. However, we measured the degradation trend is that the larger substrate current induced hot carrier degradation is smaller.
    For the abnormal degradation, we analysis of experimental data and computer-aided simulation (TCAD) software, we can find that the substrate current caused by the larger part of the reason is its internal electric field and impact ionization rate is larger.
    However, we have purposed three reasons to explain this abnormal phenomenon. First, a deeper Si recess depth is caused by excessive etching induced more defects where below spacer. Secondly, the topology difference induced this phenomenon. Thirdly, the linear region drain current of a deeper Si recess depth is closer to interface (Si/SiO2) than shallower Si recess depth. Therefore, the current path of a deeper Si recess device is affected by interface state more than shallower Si recess device. So a deeper Si recess device has more degradation than shallower Si recess device.
    According to our measurement data and simulation results, it can be found that Si recess has little effect on the basic electrical performance of devices, but this structure is not ignore issue in hot carrier reliability. Because the depth of Si recess increases, the amount of hot carrier degradation of the device is increases. Therefore, it is an important challenge to reduce the production of Si recess structure in the process of device.

    中文摘要 I Abstract III 致謝 V Content VI Table Captions IX Figure Captions X Chapter1 Introduction 1 1-1 Motivation 1 1-2 Introduction of HV device’s structure and applications 2 1-3 Introduction of hot carrier reliability 3 1-4 Reduction of hot carrier effect 4 1-4-1 Lightly Doped Drain 4 1-4-2 Nitrogen Postdeposition Anneal Process 5 1-4-3 High–Density–Plasma (HDP-CVD) oxide deposition 5 1-5 About this thesis 6 Chapter 2 Device Characteristics and Measurement Setup 11 2-1 Introduction 11 2-2 Devices structure description 11 2-2-1 Device manufacturing process 11 2-2-2 Introduction the reason for Si recess 12 2-2-3 Difference between the devices 12 2-3 Measurement setup 13 2-3-1 Measurement setup 13 2-3-2 ID-VG measurement 13 2-3-3 ID-VD measurement 14 2-3-4 Off-state breakdown voltage measurement 14 2-3-5 Series resistance measurement 15 2-4 Summary 16 Chapter 3 Correlation between Different Silicon Recess and Substrate Current 31 3-1 Introduction 31 3-2 Substrate current physical mechanism of MOSFETs 31 3-3 The measurement result of different silicon recess depth 32 3-4 Introduction of technology computer aid design 33 3-5 Result of TCAD simulation and discussion 34 3-6 Summary 35 Chapter 4 Analysis of Hot Carrier Effect Induced Degradation on Different Process Devices 44 4-1 Introduction 44 4-2 Hot carrier stress condition and measurement setup 44 4-3 Experiment results of hot carrier degradation 45 4-4 Investigate and improvement of hot carrier reliability 47 4-5 Summary 49 Chapter 5 Conclusion and Future Work 63 5-1 Conclusion 63 5-2 Future Work 65 Reference 66

    [1] Behrouz Afzal, Behzad Ebrahimi, Ali Afzali-Kusha, Saeed Mohammadi,“Calculation of on-state I–V characteristics of LDMOSFETs based on an accurate LDD resistance modeling,” Superlattices and Microstructures, Volume 52, Issue 3, September 2012, pp. 560–576
    [2] Posch, W ; Murhammer, C ; Seebacher, E ,“Test Structure for High Voltage LD-MOSFET Device Mismatch Investigations,” IEEE Transactions on Semiconductor Manufacturing, Volume: 25, Issue: 2, May 2012, pp. 136–144
    [3] Khemka,V ; Parthasarathy,V ; Zhu, RG ; Bose ,“A floating RESURF (FRESURF) LD-MOSFET device concept,” IEEE Electron Device Letters, Volume: 24, Issue: 10, Oct. 2003, pp. 664–666
    [4] Vandooren, A ; Cristoloveanu,S ; Conley, JF ; Mojarradi, M ; Kolawa, E ,“A systematic investigation of the degradation mechanisms in SOI n-channel LD-MOSFETs,” Solid-State Electronics, Volume 47, Issue 9, September 2003, pp. 1419–1427
    [5] Sun, WF ; Zhang, CW ; Liu, SY ; Shi, LX ,“Hot-Carrier-Induced On-Resistance Degradation of n-Type Lateral DMOS Transistor With Shallow Trench Isolation for High-Side Application,” IEEE Transactions on Device and Materials Reliability, Volume: 15, Issue: 3, Sept. 2015, pp. 458–460
    [6] Luo, JX ; Chen, J ; Chai, Z ; Lu, K ; He, WW ; Yang, Y ; Wang, X ,“The Impact of Shallow-Trench-Isolation Mechanical Stress on the Hysteresis Effect of Partially Depleted Silicon-on-Insulator n-Type Metal-Oxide-Semiconductor Field Effects,” Chinese Physics Letters, Volume 31, Number 12
    [7] Lee, Chang-Chun ; Liu, Chuan-Hsi ; Deng, Rong Hao ; Hsu, Hung-Wen ; Chiang, Kuo-Ning ,“Investigation of consequent process-induced stress for N-type metal oxide semiconductor field effect transistor with a sunken shallow trench isolation pattern” Thin Solid Films, Volume 557, 30 April 2014, pp. 323–328
    [8] Lee,Seonhaeng ; Kim,Dongwoo ;Kim, Cheolgyu ; Lee, Chiho ; Park, Jeongsoo ; Kang,Bongkoo,“Channel width dependence of mechanical stress effects induced by shallow trench isolationon device performance of nanoscale nMOSFETs,” MICROELECTRONICS RELIABILITY , Volume 52, Issues 9–10, September–October 2012, pp. 1949–1952
    [9] He,Yandong ; Zhang,Ganggang,“Investigation of Hot Carrier Degradation in Shallow-Trench-Isolation-Based High-Voltage Laterally Diffused Metal–Oxide–Semiconductor Field-Effect Transistors by a Novel Direct Current Current–Voltage Technique ,” Japanese Journal of Applied Physics, Volume 51, Number 4S
    [10] S. Shahabuddin , N. Soin b , K.K. Goh a , Y. Abdul Wahab , H. Hussin,“Voltage dependences of parameter drifts in hot carrier degradation for n-channel LDMOS transistors,” Microelectronic Engineering , Volume 109, September 2013, pp. 101–104
    [11] A.G.M. Das,“Hot-electron induced impact-ionization damage at the interface of sub-micron silicon MOS devices: Model and monitor,” Physica B , Volume 404, Issue 22, 1 December 2009, pp. 4393–4396
    [12] Koji Eriguchi, Asahiko Matsuda, Yoshinori Nakakubo, Masayuki Kamei, Hiroaki Ohta, and Kouichi Ono,“Effects of Plasma-Induced Si Recess Structure on n-MOSFET Performance Degradation,” IEEE ELECTRON DEVICE LETTERS , VOL. 30, NO. 7, JULY 2009, pp. 712–714
    [13] Koji Eriguchi, Masayuki Kamei, Yoshinori Takao, and Kouichi Ono,“Modeling the Effects of Plasma-Induced Physical Damage on Subthreshold Leakage Current in Scaled MOSFETs,” IC Design and Technology (ICICDT), 2010 IEEE International Conference on , pp. 94–97
    [14] Koji Eriguchi, Asahiko Matsuda, Yoshinori Nakakubo, Masayuki Kamei, Hiroaki Ohta and Kouichi Ono,“Study of Plasma-Induced "Si Recess Structure" and Its Effects on Threshold Voltage Variability in Advanced MOSFETs,” 2009 IEEE International Conference on IC Design and Technology ,, pp. 101–104
    [15] Solar panels:
    https://www.berrys.uk.com/wp-content/uploads/2014/09/solar.jpg
    [16] Apple product:
    http://www.apple.com/pr/products/
    [17] Automobile electronics
    http://www.autoblog.com/photos/2015-bmw-i8-first-drive/

    [18] Air plane
    https://www.lawyertime.com/practice-areas/airplane-accidents/
    [19] Silicon Wafer
    http://www.scmfocus.com
    [20] Serkan Dusmez, Student Member, IEEE, Manish Bhardwaj, Student Member, IEEE, Lei Sun, and Bilal Akin, Senior Member, IEEE,“In Situ Condition Monitoring of High-Voltage Discrete Power MOSFET in Boost Converter Through Software Frequency Response Analysis,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 63, NO. 12, DECEMBER 2016, pp. 7693–7702
    [21] Gaoqiang Deng, Jie Wei, Jianping Liu, Xiaorong Luo,“An ultralow on-resistance high-voltage SOI p-channel LDMOS,” Superlattices and Microstructures , Volume 100, 2016, pp. 1029–1041
    [22] Xiaorong Luo, Member, IEEE, Qiao Tan, Jie Wei, Kun Zhou, Gaoqiang Deng, Zhaoji Li, and Bo Zhang, Member, IEEE.,“Ultralow ON-Resistance High-Voltage p-Channel LDMOS With an Accumulation-Effect Extended Gate,” IEEE TRANSACTIONS ON ELECTRON DEVICES , VOL. 63, NO. 6, JUNE 2016, pp. 2614–2619
    [23] J.F. Chen and Y.-S. Feng,“Breakdown voltage walkout resulting from hot-carrier-induced interface states in n-type LDMOS transistors,” ELECTRONICS LETTERS 18th August 2016 , Vol. 52 No. 17, pp. 1488–1490
    [24] Shengdong Hu , Jun Luo , YuYu Jiang , Kun Cheng , Yinhui Chen , Jingjing Jin, Jian’an Wang , Jianlin Zhou , Fang Tang , Xichuan Zhou , Ping Gan ,“Improving breakdown, conductive, and thermal performances for SOI high voltage LDMOS using a partial compound buried layer,” Solid-State Electronics , Volume 117, pp. 146–157
    [25] Jone F. Chen, Chun-Po Chang, Yu Ming Liu, Yan-Lin Tsai1, Hao-Tang Hsu, Chih-Yuan Chen and Hann-Ping Hwang,“Drift region doping effects on characteristics and reliability of high-voltage n-type metal–oxide–semiconductor transistors,” Japanese Journal of Applied Physics , Volume 55, Number 1S
    [26] Wolf, S. (1995), Silicon Processing for the VLSI Era volume 3: The Submicron MOSFET, Sunset Beach, California, U. S. A: Lattice Press
    [27] Hu, C. M., C. T. Simon, H. Fu-Chieh, P. K. ko, T. Y. Chan, and K. W. Terrill (1985), “Hot-Electron-Induced MOSFET Degradation-Model, Monitor, and Improvement”, IEEE Journal of Solid-State Circuits, 20, pp. 295~305
    [28] Wen-Shiang Liao, Yie-Gie Liaw, Mao-Chyuan Tang, Sandipan Chakraborty, and Chee Wee Liu, “Investigation of Reliability Characteristics in NMOS and PMOS FinFETs”, IEEE ELECTRON DEVICE LETTERS, VOL. 29, NO. 7, JULY 2008, pp. 788–790
    [29] Chen Hai-Feng, Hao Yue, Ma Xiao-Hua, Li Kang and Ni Jin-Yu, “Hot-carrier degradation for 90 nm gate length LDD-NMOSFET with ultra-thin gate oxide under low gate voltage stress”, Chinese Physics, Volume 16, Number 3, pp. 821–825
    [30] Yue Hao, Lin-An Yang *, Chun-Li Yu, “Hot-carrier degradation for 90 nm gate length LDD-NMOSFET with ultra-thin gate oxide under low gate voltage stress”, Solid-State Electronics, Volume 50, Issues 9–10, pp. 1540–1545
    [31] G. Boccardi, R. Ritzenthaler, M. Togo, T. Chiarella, M. S. Kim, S. Yuichiro, A. Veloso, S. A. Chew, E. Vecchio, S. Locorotondo, K. Devriendt, P. Ong, S. Brus, N. Horiguchi, and A. Thean, “RMG technology integration in FinFET devices,” in Proc. Int. Conf. Solid-State Devices Mater., 2012, pp. 723–724
    [32] A. Veloso, L.-Å. Ragnarsson, M. J. Cho, K. Devriendt, K. Kellens, F. Sebaai, S. Suhard, S. Brus, Y. Crabbe, T. Schram, E. Röhr, V. Paraschiv, G. Eneman, T. Kauerauf, M. Dehan, S.-H. Hong, S. Yamaguchi, S. Takeoka, Y. Higuchi, H. Tielens, A. Van Ammel, P. Favia, H. Bender, A. Franquet, T. Conard, X. Li, K.-L. Pey, H. Struyf, P. Mertens, P. P. Absil, N. Horiguchi, and T. Hoffmann, “Gate-last vs. gate-first technology for aggressively scaled EOT logic/RF CMOS,” in Proc. IEEE Symp. VLSI Technol., 2011, pp. 34–35.
    [33] C. Auth, A. Cappellani, J.-S. Chun, A. Dalis, A. Davis, T. Ghani, G. Glass, T. Glassman, M. Harper, M. Hattendorf, P. Hentges, S. Jaloviar, S. Joshi, J. Klaus, K. Kuhn, D. Lavric, M. Lu, H. Mariappan, K. Mistry, B. Norris, N. Rahhal-orabi, P. Ranade, J. Sandford, L. Shifren, V. Souw, K. Tone, F. Tambwe, A. Thompson, D. Towner, T. Troeger, P. Vandervoorn, C. Wallace, J. Wiedemer, and C. Wiegand, “45 nm high-k + metal gate strain-enhanced transistors,” in Proc. IEEE Symp. VLSI Technol., 2008, pp. 128–129.
    [34] S. Hyun, J.-H. Han, H.-B. Park, H.-J. Na, H. J. Son, H. Y. Lee, H.-S. Hong, H.-L. Lee, J. Song, J. J. Kim, J. Lee, W. C. Jeong, H. J. Cho, K. I. Seo, D. W. Kim, S. P. Sim, S. B. Kang, D. K. Sohn, S. Choi, H. Kang, and C. Chung, “Aggressively scaled high-k last metal gate stack with low variability for 20 nm logic high performance and low power applications,” in Proc. IEEE Symp. VLSI Technol., 2011, pp. 32–33
    [35] Moonju Cho, Hiroaki Arimura, Jae Woo Lee, Ben Kaczer, Anabela Veloso, Guillaume Boccardi, Lars-Åke Ragnarsson, Thomas Kauerauf, Naoto Horiguchi, and Guido Groeseneken, “Improved Channel Hot-Carrier Reliability in p-FinFETs With Replacement Metal Gate by a Nitrogen Postdeposition Anneal Process,” IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 14, NO. 1, pp. 408–412
    [36] Jifa Hao, Zhaohui Luo, and Timwah Luk, “Improved Channel Hot Carrier Degradation Improvement on Submicron NMOSFET in Bipolar-CMOS-DMOS (BCD) Process,” Solid-State and Integrated Circuit Technology (ICSICT), 2012 IEEE 11th International Conference on, pp. 1–3
    [37] B1500A semiconductor device parameter analyzer introduction
    http://www.keysight.com/en/pc-2250789/b1500a-semiconductor-device-analyzer?cc=TW&lc=cht
    [38] Swin Super Solution & Service
    http://www.3-s.com.tw/prod_other _c.html
    [39] Ikuo Kurachi, Member, IEEE, Kazuo Kobayashi, Marie Mochizuki, Member, IEEE, Masao Okihara, Member, IEEE, Hiroki Kasai, Takaki Hatsui, Kazuhiko Hara, Toshinobu Miyoshi, and Yasuo Arai, Member, IEEE, “Tradeoff Between Low-Power Operation and Radiation Hardness of Fully Depleted SOI pMOSFET by Changing LDD Conditions,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 6, JUNE 2016, pp. 2293–2298.
    [40] Franklin L. Duan, Student Member, IEEE, Shankar P. Sinha, Student Member, IEEE, Dimitris E. Ioannou, Member, IEEE, and Frederick T. Brady, Member, IEEE, “LDD Design Tradeoffs for Single Transistor Latch-Up and Hot Carrier Degradation Control in Accumulation Mode FD SOI MOSFET’s,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 44, NO. 6, JUNE 1997, pp. 972–977.
    [41] T. Y. CHAN, P. K. KO., MEMBER, IEEE, AND c. HU, SENIOR MEMBER, IEEE, “A Simple Method to Characterize Substrate Current in MOSFET’s,” I TIEREOEN DEVICE LETTERNS, VOL.EDL-5,NO.12, DECEMBER 1984, pp. 505–507.
    [42] Y. A. El Mansy and A. R. Boothroyed, “A simple two-dimensional model for IGFET operation in the saturation region,” IEEE Trans. Electron Devices, vol. EDL-24, p. 254, Mar. 1977.
    [43] P. K. KO, C. Hu, and R. S. Muller, “A unified model for hot-electron currents in MOSFETs,” in ZEDM Tech. Dig., 1981, p.600.
    [44] S. Tanaka and M. Ishikawa, “One-dimensional writing model of n-channel floating gate-ionization MOS(FIMOS),” IEEE Trans. Electron Devices, vol. ED-28, pp. 1190-1197, 1981.
    [45] Silvaco “TCAD World Leader” Silvaco engineered excellence.
    [46] S Khandker N. Quader, Student Member, IEEE, Chester C . Li, Robert Tu, Elyse Rosenbaum, Ping K. KO, Member, IEEE, and Chenming Hu, “A Bidirectional NMOSFET Current Reduction Model for Simulation of Hot-Carrier-Induced Circuit Degradation,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 40, NO. 12,, pp. 2245-2254, 1993.

    下載圖示 校內:2021-12-11公開
    校外:2021-12-11公開
    QR CODE