| 研究生: |
戴廷安 Tai, Ting-an |
|---|---|
| 論文名稱: |
探討TLR2引發之發炎反應在糖尿病腎病中的角色 Study of TLR2-mediated inflammation in diabetic nephropathy |
| 指導教授: |
蔡曜聲
Tsai, Yau-sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 傷害相關物質 、TLR2 、發炎反應 、糖尿病腎病 |
| 外文關鍵詞: | TLR2, diabetic nephropathy, DAMPs, inflammation |
| 相關次數: | 點閱:58 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
糖尿病腎病 (diabetic nephropathy) 是多種糖尿病併發症之一,且為末期腎衰竭的主要原因,而許多研究證實,發炎反應在糖尿病腎病中扮演重要的角色。在發炎反應中,已知可由toll-like receptors (TLRs) 啟動,辨認外來病原或來自受傷細胞所釋放的物質而引起發炎反應。近年來,研究發現TLR2參與在ischemia/reperfusion引起的腎臟病變中,顯示TLR2在調控腎臟病變中扮演重要角色。在本研究中發現TLR2表現量在糖尿病小鼠腎臟中有顯著性升高,但在肝臟及肺臟中則否。根據以上文獻及實驗結果,可假設高血糖所引起的細胞傷害,活化了TLR2及發炎反應,最終加速糖尿病腎病之形成。在此研究中,我首先建立streptozotocin (STZ) 刺激引起的糖尿病小鼠模式。在高血糖三至四個月後,糖尿病小鼠身上有腎臟功能缺損現象,包括微蛋白尿、腎臟肥大及基質堆積。Proinflammatory cytokine (TNF-a、IL-10、IL12)、chemokines (MCP1、MIP2、KC、IP10) 以及marcrophage marker (CD68、F4/80) 皆在糖尿病小鼠腎臟中顯著升高。已知會透過TLR2刺激cytokines及/或chemokines表現升高的傷害相關物質,包括biglycan、hyaluronic acid synthase 2 (HAS2)及HSP70皆在糖尿病小鼠腎臟中顯著升高。經以上結果表示,在高血糖環境中,TLR2也許能調控腎臟細胞傷害所引起的發炎反應。為了進一步探討TLR2在糖尿病腎病變中的重要性,我們使用STZ將TLR2缺失(Tlr2-/-)小鼠刺激引起糖尿病並觀察其腎臟功能是否較WT控制組好。在早期糖尿病中,Tlr2-/-糖尿病小鼠腎臟肥大情形較WT控制組輕微許多,但此現象並未在較後期糖尿病中發現。然而,微蛋白尿情形在Tlr2-/-糖尿病小鼠及WT控制組中並無差異。由以上可知,TLR2缺失可延緩糖尿病引起的腎臟肥大。為了進一步檢測TLR2缺失造成的腎臟肥大延緩是否與發炎反應及ECM堆積有關,我們以Realtime-PCR方式偵測fibronectin及cytokine/chemokine mRNA表現量。在早期糖尿病,fibronectin、cytokine及chemokine mRNA皆在Tlr2-/-糖尿病小鼠中有較低表現量。因此,TLR2缺失造成的腎臟肥大延緩與發炎反應及ECM堆積有關。由以上實驗結果,我們認為在糖尿病中,傷害相關物質活化了TLR2,引起發炎反應及ECM堆積而造成腎臟肥大。
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease and a number of studies have demonstrated the significance of inflammation in DN. Toll-like receptors (TLRs), which respond to a variety of pathogens, transduce the inflammatory signals in the innate immunity. In addition to its pathogen recognition characteristic, TLRs have also been implicated in the recognition of endogenous host molecules during cellular injury. Recent study demonstrated that TLR2 participated in the kidney ischemia/reperfusion injury, suggesting that TLR2 signaling plays an important role in mediating kidney damage. Therefore, we hypothesize that cellular injury induced by hyperglycemia activates TLR2 signaling and inflammation resulting in acceleration of the development of DN. To study the role of TLR2 in DN, we employed the streptozotocin (STZ)-induced diabetic mouse model. 3~4 months after hyperglycemia, diabetic mice exhibited kidney dysfunction characterized by albuminuria, kidney hypertrophy and matrix deposition. We found that the increase of TLR2 expression was significant in kidney, but less evident in liver and lung of diabetic mice. Cytokines (TNF-a, IL-10 and IL-12, chemokines (MCP1, MIP2, KC and IP10) and macrophage marker (CD68 and F4/80) were upregulated in diabetic kidneys. Injury-associated host molecules known to stimulate the expression of cytokines and/or chemokines through TLR2, including biglycan and hyaluronic acid synthase 2 (HAS2) and HSP70, were increased in diabetic kidneys. Thus, these suggest that TLR2 may mediate the cellular injury-induced inflammation in diabetic kidney under persistent hyperglycemia. To directly address the involvement of TLR2 in the pathogenesis of DN, we employed Tlr2-/- mice in the STZ-induced DN mouse model. Kidney hypertrophy was attenuated in Tlr2-/- diabetic mice at early stage after diabetes but this attenuation was not existed at late stage. No difference in albuminuria was detected between Tlr2-/- and WT mice at all stages after diabtes. The delay of kidney hypertrophy by TLR2 deficiency was associated with reduced expressions of fibronectin, cytokines and chemokines at early stage after diabetes. These suggest that TLR2 deficiency postpones diabetes-induced kidney hypertrophy, which is likely mediated through the decreases in inflammation and ECM accumulation at early stage of DN. Thus, our results underscore the importance of TLR2 in regulating inflammation by engagement with ligands released from damaged host cells in the development of DN. These further provide a basis for therapeutic strategies to prevent or treat DN.
1. L M Tierney, S.J.M., M A Papadakis 2002. Current medical diagnosis&treatment. international edition. New York: Lange medical books/McGraw-Hill:1203-1215.
2. Wild, S., Roglic, G., Green, A., Sicree, R., and King, H. 2004. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047-1053.
3. 2005. Total Prevalence of Diabetes & Pre-diabetes. American Diabetes Association
4. Rother, K.I. 2007. Diabetes treatment--bridging the divide. N Engl J Med 356:1499-1501.
5. Gross, J.L., de Azevedo, M.J., Silveiro, S.P., Canani, L.H., Caramori, M.L., and Zelmanovitz, T. 2005. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28:164-176.
6. Andersen, A.R., Christiansen, J.S., Andersen, J.K., Kreiner, S., and Deckert, T. 1983. Diabetic nephropathy in Type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 25:496-501.
7. Rossing, P., Rossing, K., Jacobsen, P., and Parving, H.H. 1995. Unchanged incidence of diabetic nephropathy in IDDM patients. Diabetes 44:739-743.
8. Bakris, G.L., Williams, M., Dworkin, L., Elliott, W.J., Epstein, M., Toto, R., Tuttle, K., Douglas, J., Hsueh, W., and Sowers, J. 2000. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis 36:646-661.
9. Fenton, S.S., Schaubel, D.E., Desmeules, M., Morrison, H.I., Mao, Y., Copleston, P., Jeffery, J.R., and Kjellstrand, C.M. 1997. Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates. Am J Kidney Dis 30:334-342.
10. Chavers, B.M., Bilous, R.W., Ellis, E.N., Steffes, M.W., and Mauer, S.M. 1989. Glomerular lesions and urinary albumin excretion in type I diabetes without overt proteinuria. N Engl J Med 320:966-970.
11. Mauer, S.M., Steffes, M.W., Ellis, E.N., Sutherland, D.E., Brown, D.M., and Goetz, F.C. 1984. Structural-functional relationships in diabetic nephropathy. J Clin Invest 74:1143-1155.
12. Tarnow, L., Rossing, P., Nielsen, F.S., Fagerudd, J.A., Poirier, O., and Parving, H.H. 2000. Cardiovascular morbidity and early mortality cluster in parents of type 1 diabetic patients with diabetic nephropathy. Diabetes Care 23:30-33.
13. Wolf, G. 2004. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 34:785-796.
14. Lewis, E.J., Hunsicker, L.G., Bain, R.P., and Rohde, R.D. 1993. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329:1456-1462.
15. Israili, Z.H., and Hall, W.D. 1992. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann Intern Med 117:234-242.
16. Lewis, C., and Barbiers, A.R. 1959. Streptozotocin, a new antibiotic. In vitro and in vivo evaluation. Antibiot Annu 7:247-254.
17. Wilson, G.L., and Leiter, E.H. 1990. Streptozotocin interactions with pancreatic beta cells and the induction of insulin-dependent diabetes. Curr Top Microbiol Immunol 156:27-54.
18. Hosokawa, M., Dolci, W., and Thorens, B. 2001. Differential sensitivity of GLUT1- and GLUT2-expressing beta cells to streptozotocin. Biochem Biophys Res Commun 289:1114-1117.
19. Lee, T.N., Alborn, W.E., Knierman, M.D., and Konrad, R.J. 2006. The diabetogenic antibiotic streptozotocin modifies the tryptic digest pattern for peptides of the enzyme O-GlcNAc-selective N-acetyl-beta-d-glucosaminidase that contain amino acid residues essential for enzymatic activity. Biochem Pharmacol 72:710-718.
20. Like, A.A., Appel, M.C., Williams, R.M., and Rossini, A.A. 1978. Streptozotocin-induced pancreatic insulitis in mice. Morphologic and physiologic studies. Lab Invest 38:470-486.
21. Like, A.A., and Rossini, A.A. 1976. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193:415-417.
22. Chow, F., Ozols, E., Nikolic-Paterson, D.J., Atkins, R.C., and Tesch, G.H. 2004. Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int 65:116-128.
23. Chow, F.Y., Nikolic-Paterson, D.J., Atkins, R.C., and Tesch, G.H. 2004. Macrophages in streptozotocin-induced diabetic nephropathy: potential role in renal fibrosis. Nephrol Dial Transplant 19:2987-2996.
24. Nguyen, D., Ping, F., Mu, W., Hill, P., Atkins, R.C., and Chadban, S.J. 2006. Macrophage accumulation in human progressive diabetic nephropathy. Nephrology (Carlton) 11:226-231.
25. Tesch, G.H. 2008. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol 294:F697-701.
26. Noronha, I.L., Fujihara, C.K., and Zatz, R. 2002. The inflammatory component in progressive renal disease--are interventions possible? Nephrol Dial Transplant 17:363-368.
27. Mezzano, S., Droguett, A., Burgos, M.E., Ardiles, L.G., Flores, C.A., Aros, C.A., Caorsi, I., Vio, C.P., Ruiz-Ortega, M., and Egido, J. 2003. Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney Int Suppl:S64-70.
28. Mezzano, S., Aros, C., Droguett, A., Burgos, M.E., Ardiles, L., Flores, C., Schneider, H., Ruiz-Ortega, M., and Egido, J. 2004. NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol Dial Transplant 19:2505-2512.
29. Lee, F.T., Cao, Z., Long, D.M., Panagiotopoulos, S., Jerums, G., Cooper, M.E., and Forbes, J.M. 2004. Interactions between angiotensin II and NF-kappaB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy. J Am Soc Nephrol 15:2139-2151.
30. Kikuchi, Y., Ikee, R., Hemmi, N., Hyodo, N., Saigusa, T., Namikoshi, T., Yamada, M., Suzuki, S., and Miura, S. 2004. Fractalkine and its receptor, CX3CR1, upregulation in streptozotocin-induced diabetic kidneys. Nephron Exp Nephrol 97:e17-25.
31. Utimura, R., Fujihara, C.K., Mattar, A.L., Malheiros, D.M., Noronha, I.L., and Zatz, R. 2003. Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes. Kidney Int 63:209-216.
32. Devaraj, S., Dasu, M.R., Rockwood, J., Winter, W., Griffen, S.C., and Jialal, I. 2008. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab 93:578-583.
33. Hansson, G.K., and Edfeldt, K. 2005. Toll to be paid at the gateway to the vessel wall. Arterioscler Thromb Vasc Biol 25:1085-1087.
34. Takeda, K., and Akira, S. 2004. TLR signaling pathways. Semin Immunol 16:3-9.
35. Takeda, K., Kaisho, T., and Akira, S. 2003. Toll-like receptors. Annu Rev Immunol 21:335-376.
36. Muzio, M., and Mantovani, A. 2001. The Toll receptor family. Allergy 56:103-108.
37. Kaisho, T., and Akira, S. 2002. Toll-like receptors as adjuvant receptors. Biochim Biophys Acta 1589:1-13.
38. Lotze, M.T., Deisseroth, A., and Rubartelli, A. 2007. Damage associated molecular pattern molecules. Clin Immunol 124:1-4.
39. Lotze, M.T., Zeh, H.J., Rubartelli, A., Sparvero, L.J., Amoscato, A.A., Washburn, N.R., Devera, M.E., Liang, X., Tor, M., and Billiar, T. 2007. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220:60-81.
40. Miyake, K. 2007. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19:3-10.
41. Rubartelli, A., and Lotze, M.T. 2007. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 28:429-436.
42. Ohashi, K., Burkart, V., Flohe, S., and Kolb, H. 2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558-561.
43. Vabulas, R.M., Ahmad-Nejad, P., da Costa, C., Miethke, T., Kirschning, C.J., Hacker, H., and Wagner, H. 2001. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332-31339.
44. Vabulas, R.M., Ahmad-Nejad, P., Ghose, S., Kirschning, C.J., Issels, R.D., and Wagner, H. 2002. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107-15112.
45. Vabulas, R.M., Braedel, S., Hilf, N., Singh-Jasuja, H., Herter, S., Ahmad-Nejad, P., Kirschning, C.J., Da Costa, C., Rammensee, H.G., Wagner, H., et al. 2002. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277:20847-20853.
46. Roelofs, M.F., Boelens, W.C., Joosten, L.A., Abdollahi-Roodsaz, S., Geurts, J., Wunderink, L.U., Schreurs, B.W., van den Berg, W.B., and Radstake, T.R. 2006. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J Immunol 176:7021-7027.
47. Schaefer, L., Babelova, A., Kiss, E., Hausser, H.J., Baliova, M., Krzyzankova, M., Marsche, G., Young, M.F., Mihalik, D., Gotte, M., et al. 2005. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 115:2223-2233.
48. Termeer, C., Benedix, F., Sleeman, J., Fieber, C., Voith, U., Ahrens, T., Miyake, K., Freudenberg, M., Galanos, C., and Simon, J.C. 2002. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195:99-111.
49. Okamura, Y., Watari, M., Jerud, E.S., Young, D.W., Ishizaka, S.T., Rose, J., Chow, J.C., and Strauss, J.F., 3rd. 2001. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276:10229-10233.
50. Guillot, L., Balloy, V., McCormack, F.X., Golenbock, D.T., Chignard, M., and Si-Tahar, M. 2002. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 168:5989-5992.
51. Park, J.S., Svetkauskaite, D., He, Q., Kim, J.Y., Strassheim, D., Ishizaka, A., and Abraham, E. 2004. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370-7377.
52. Miller, Y.I., Viriyakosol, S., Binder, C.J., Feramisco, J.R., Kirkland, T.N., and Witztum, J.L. 2003. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J Biol Chem 278:1561-1568.
53. Biragyn, A., Ruffini, P.A., Leifer, C.A., Klyushnenkova, E., Shakhov, A., Chertov, O., Shirakawa, A.K., Farber, J.M., Segal, D.M., Oppenheim, J.J., et al. 2002. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:1025-1029.
54. Li, M., Carpio, D.F., Zheng, Y., Bruzzo, P., Singh, V., Ouaaz, F., Medzhitov, R.M., and Beg, A.A. 2001. An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J Immunol 166:7128-7135.
55. Jiang, D., Liang, J., Fan, J., Yu, S., Chen, S., Luo, Y., Prestwich, G.D., Mascarenhas, M.M., Garg, H.G., Quinn, D.A., et al. 2005. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11:1173-1179.
56. Wu, H., Chen, G., Wyburn, K.R., Yin, J., Bertolino, P., Eris, J.M., Alexander, S.I., Sharland, A.F., and Chadban, S.J. 2007. TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 117:2847-2859.
57. Tsung, A., Sahai, R., Tanaka, H., Nakao, A., Fink, M.P., Lotze, M.T., Yang, H., Li, J., Tracey, K.J., Geller, D.A., et al. 2005. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 201:1135-1143.
58. Frantz, S., Ertl, G., and Bauersachs, J. 2007. Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc Med 4:444-454.
59. Tesar, B.M., and Goldstein, D.R. 2007. Toll-like receptors and their role in transplantation. Front Biosci 12:4221-4238.
60. Tsuboi, N., Yoshikai, Y., Matsuo, S., Kikuchi, T., Iwami, K., Nagai, Y., Takeuchi, O., Akira, S., and Matsuguchi, T. 2002. Roles of toll-like receptors in C-C chemokine production by renal tubular epithelial cells. J Immunol 169:2026-2033.
61. Patole, P.S., Pawar, R.D., Lech, M., Zecher, D., Schmidt, H., Segerer, S., Ellwart, A., Henger, A., Kretzler, M., and Anders, H.J. 2006. Expression and regulation of Toll-like receptors in lupus-like immune complex glomerulonephritis of MRL-Fas(lpr) mice. Nephrol Dial Transplant 21:3062-3073.
62. Anders, H.J., Banas, B., and Schlondorff, D. 2004. Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 15:854-867.
63. Shigeoka, A.A., Holscher, T.D., King, A.J., Hall, F.W., Kiosses, W.B., Tobias, P.S., Mackman, N., and McKay, D.B. 2007. TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways. J Immunol 178:6252-6258.
64. Shirali, A.C., and Goldstein, D.R. 2008. Tracking the toll of kidney disease. J Am Soc Nephrol 19:1444-1450.
65. Leemans, J.C., Stokman, G., Claessen, N., Rouschop, K.M., Teske, G.J., Kirschning, C.J., Akira, S., van der Poll, T., Weening, J.J., and Florquin, S. 2005. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest 115:2894-2903.
66. Wang S, K.S., Porubsky S, et al. 2006. Toll-like receptor deficiency reduces chronic allograft nephropathy. Nieren- Hochdruckkrankheiten 35:347.
67. Anders, H.J., and Schlondorff, D. 2007. Toll-like receptors: emerging concepts in kidney disease. Curr Opin Nephrol Hypertens 16:177-183.
68. Brown, H.J., Sacks, S.H., and Robson, M.G. 2006. Toll-like receptor 2 agonists exacerbate accelerated nephrotoxic nephritis. J Am Soc Nephrol 17:1931-1939.
69. Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., and Akira, S. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443-451.
70. Iwasaki, H., Okamoto, R., Kato, S., Konishi, K., Mizutani, H., Yamada, N., Isaka, N., Nakano, T., and Ito, M. 2007. High glucose induces plasminogen activator inhibitor-1 expression through Rho/Rho-kinase-mediated NF-kappaB activation in bovine aortic endothelial cells. Atherosclerosis.
71. Schaefer, L., Raslik, I., Grone, H.J., Schonherr, E., Macakova, K., Ugorcakova, J., Budny, S., Schaefer, R.M., and Kresse, H. 2001. Small proteoglycans in human diabetic nephropathy: discrepancy between glomerular expression and protein accumulation of decorin, biglycan, lumican, and fibromodulin. Faseb J 15:559-561.
72. Beck-Schimmer, B., Oertli, B., Pasch, T., and Wuthrich, R.P. 1998. Hyaluronan induces monocyte chemoattractant protein-1 expression in renal tubular epithelial cells. J Am Soc Nephrol 9:2283-2290.
73. Wuthrich, R.P. 1999. The proinflammatory role of hyaluronan-CD44 interactions in renal injury. Nephrol Dial Transplant 14:2554-2556.
74. Chajara, A., Raoudi, M., Delpech, B., Leroy, M., Basuyau, J.P., and Levesque, H. 2000. Circulating hyaluronan and hyaluronidase are increased in diabetic rats. Diabetologia 43:387-388.
75. Jones, S., Jones, S., and Phillips, A.O. 2001. Regulation of renal proximal tubular epithelial cell hyaluronan generation: implications for diabetic nephropathy. Kidney Int 59:1739-1749.
76. Takeda, M., Babazono, T., Nitta, K., and Iwamoto, Y. 2001. High glucose stimulates hyaluronan production by renal interstitial fibroblasts through the protein kinase C and transforming growth factor-beta cascade. Metabolism 50:789-794.
77. Park, J., Ryu, D.R., Li, J.J., Jung, D.S., Kwak, S.J., Lee, S.H., Yoo, T.H., Han, S.H., Lee, J.E., Kim, D.K., et al. 2008. MCP-1/CCR2 system is involved in high glucose-induced fibronectin and type IV collagen expression in cultured mesangial cells. Am J Physiol Renal Physiol 295:F749-757.
78. Chow, F.Y., Nikolic-Paterson, D.J., Ozols, E., Atkins, R.C., Rollin, B.J., and Tesch, G.H. 2006. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int 69:73-80.
79. Yozai, K., Shikata, K., Sasaki, M., Tone, A., Ohga, S., Usui, H., Okada, S., Wada, J., Nagase, R., Ogawa, D., et al. 2005. Methotrexate prevents renal injury in experimental diabetic rats via anti-inflammatory actions. J Am Soc Nephrol 16:3326-3338.
80. Banas, M.C., Banas, B., Hudkins, K.L., Wietecha, T.A., Iyoda, M., Bock, E., Hauser, P., Pippin, J.W., Shankland, S.J., Smith, K.D., et al. 2008. TLR4 links podocytes with the innate immune system to mediate glomerular injury. J Am Soc Nephrol 19:704-713.
81. Lin, L. 2006. RAGE on the Toll Road? Cell Mol Immunol 3:351-358.
82. Brown, H.J., Lock, H.R., Sacks, S.H., and Robson, M.G. 2006. TLR2 stimulation of intrinsic renal cells in the induction of immune-mediated glomerulonephritis. J Immunol 177:1925-1931.