簡易檢索 / 詳目顯示

研究生: 李沂倫
Li, Yi-Lun
論文名稱: 人類大腦連結圖譜計畫中核磁共振影像之解剖與功能性連結分析
Anatomical and functional connectivity analysis using Magnetic Resonance Imaging in Human Connectome Project
指導教授: 吳明龍
Wu, Ming-Long
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 醫學資訊研究所
Institute of Medical Informatics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 64
中文關鍵詞: 功能性磁振造影擴散磁振造影解剖權重功能性連接
外文關鍵詞: fMRI, dMRI, awFC
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類大腦之間的神經活動關聯性近年來已逐漸發展並深入討論,功能性磁振造影(Functional magnetic resonance imagimg, fMRI)的成像技術能透過大腦血氧的變化來觀察大腦內的活動情況。
    為了瞭解大腦白質神經連結對於大腦神經活動連結分析影響,我們利用擴散磁振造影(Diffusion magnetic resonance imagimg, dMRI)的技術並使用演算法將大腦白質神經追蹤出來。接著將fMRI及dMRI兩者技術的資料集合併並稱為解剖權重功能性連接(Anatomically weighted functional connectivity, awFC)。最後會對三種資料分析方法的結果做討論,實驗結果發現,使用解剖權重功能性連接的資料集的分群結果具有較高的功能性連接 (Functional connectivity, FC)強度與結構性連接(Structural connectivity, SC)強度。

    Recently, the relation among activated human brain regions has drawn interests and has been investigated. The imaging technique of functional magnetic resonance imagimg (fMRI) can be used to observe by changes in cerebral blood oxygenation and, therefore, brain connectivity.
    To understand how white matter (WM) tractography influences brain connectivity, we use diffusion magnetic resonance imagimg (dMRI) technique and algorithm to calculate WM map. The connectivity measurement combining fMRI and dMRI datasets is called anatomically weighted functional connectivity (awFC). Finally, the results show that, when using awFC datasets, the clusters have higher functional connectivity (FC) and structural connectivity (SC) strength when using awFC datasets.

    摘要 i Abstract ii Acknowledgements iii Table of Contents iv List of Tables vi List of Figures vii Chapter1 Introduction 1 1.1 Functional MRI theory 1 1.2 Diffusion MRI theory 2 1.3 Brain connectivity in MRI 6 1.4 Human Connectome Project 7 Chapter2 Materials and Methods 8 2.1 Functional MRI processing 8 2.1.1 Data preprocssing pipelines 8 2.1.2 Functional Connectivity (FC) 12 2.2 Diffusion MRI Procedure 15 2.2.1 Data Preprocssing Pipelines 15 2.2.2 DTI ROI selection by template coregistration 17 2.2.3 Structural Connectivity (SC) 18 2.3 Anatomically weighted FC (awFC) Method 23 2.4 Brain network analysis 26 2.4.1 Hierarchical clustering in individual subject data 26 2.4.2 Group analysis 30 2.5 Experiment Design 32 2.5.1 Data Acquisition 32 2.5.2 Functional MRI Paradigm 33 Chapter3 Experiment results 34 3.1 Single subject clustering result 34 3.2 Determination of anatomical weighting (λ) in awFC 37 3.3 Comparing FC, awFC, and SC in group analysis 50 3.4 fMRI brain networks from awFC 52 Chapter4 Discussion 55 4.1 Characteristics of awFC 55 4.2 Influence of anatomical weighting (λ) 56 4.3 Group analysis considerations 57 4.4 awFC In Motor Task 58 4.5 Conclusions and Prospects 59 Reference 60

    1. Ogawa, S., et al., Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 1990. 87(24): p. 9868-72.
    2. Friston, K.J., Functional and effective connectivity: a review. Brain Connect, 2011. 1(1): p. 13-36.
    3. Le Bihan, D., et al., Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging, 2001. 13(4): p. 534-46.
    4. Basser, P.J. and E. Özarslan, Chapter 1 - Introduction to Diffusion MR, in Diffusion MRI, H. Johansen-Berg and T.E.J. Behrens, Editors. 2009, Academic Press: San Diego. p. 2-10.
    5. Schaefer, P.W., P.E. Grant, and R.G. Gonzalez, Diffusion-weighted MR imaging of the brain. Radiology, 2000. 217(2): p. 331-45.
    6. Graessner, J., Frequently Asked Questions: Diffusion-Weighted Imaging (DWI). 2011.
    7. Friston, K.J., et al., Functional topography: multidimensional scaling and functional connectivity in the brain. Cereb Cortex, 1996. 6(2): p. 156-64.
    8. Geweke, J.F., Measures of conditional linear dependence and feedback between time series. American Statistical Association, 1984. 79: p. 907-915.
    9. McLntosh, A.R. and F. Gonzalez-Lima, Structural equation modeling and its application to network analysis in functional brain imaging. Human Brain Mapping, 1994. 2(1-2): p. 2-22.
    10. Friston, K.J., L. Harrison, and W. Penny, Dynamic causal modelling. Neuroimage, 2003. 19(4): p. 1273-302.
    11. Behrens, T.E., et al., Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med, 2003. 50(5): p. 1077-88.
    12. Behrens, T.E., et al., Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage, 2007. 34(1): p. 144-55.
    13. Feigl, G.C., et al., Magnetic resonance imaging diffusion tensor tractography: evaluation of anatomic accuracy of different fiber tracking software packages. World Neurosurg, 2014. 81(1): p. 144-50.
    14. Jiang, H., et al., DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed, 2006. 81(2): p. 106-16.
    15. Chou, M.C., et al., Tensor deflection (TEND) tractography with adaptive subvoxel stepping. J Magn Reson Imaging, 2006. 24(2): p. 451-8.
    16. Van Essen, D.C., et al., The Human Connectome Project: a data acquisition perspective. Neuroimage, 2012. 62(4): p. 2222-31.
    17. Van Essen, D.C., et al., The WU-Minn Human Connectome Project: an overview. Neuroimage, 2013. 80: p. 62-79.
    18. Marcus, D.S., et al., Human Connectome Project informatics: quality control, database services, and data visualization. Neuroimage, 2013. 80: p. 202-19.
    19. Glasser, M.F., et al., The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage, 2013. 80: p. 105-24.
    20. Andersson, J.L.R., S. Skare, and J. Ashburner, How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage, 2003. 20(2): p. 870-888.
    21. Greve, D.N. and B. Fischl, Accurate and robust brain image alignment using boundary-based registration. NeuroImage, 2009. 48(1): p. 63-72.
    22. Tzourio-Mazoyer, N., et al., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 2002. 15(1): p. 273-89.
    23. Andersson, et al., A Comprehensive Gaussian Process Framework for Correcting Distortions and Movements in Diffusion Images. ISMRM, Melbourne, Australia, 2012.
    24. Jovicich, J., et al., Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data. NeuroImage, 2006. 30(2): p. 436-443.
    25. Alexander, D.C., et al., Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans Med Imaging, 2001. 20(11): p. 1131-9.
    26. Cao, Q., et al., Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder. J Neurosci, 2013. 33(26): p. 10676-87.
    27. Bowman, F.D., et al., Determining functional connectivity using fMRI data with diffusion-based anatomical weighting. Neuroimage, 2012. 62(3): p. 1769-79.
    28. Wang, Y. and T.Q. Li, Analysis of whole-brain resting-state FMRI data using hierarchical clustering approach. PLoS One, 2013. 8(10): p. e76315.
    29. Moreno-Dominguez, D., A. Anwander, and T.R. Knosche, A hierarchical method for whole-brain connectivity-based parcellation. Hum Brain Mapp, 2014.
    30. Everitt, B., Cluster Analysis. Heinemann Educ., London. 1974.
    31. Feinberg, D.A., et al., Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging. PLoS ONE, 2010. 5(12): p. e15710.
    32. Barch, D.M., et al., Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage, 2013. 80: p. 169-89.
    33. Leech, R., R. Braga, and D.J. Sharp, Echoes of the brain within the posterior cingulate cortex. J Neurosci, 2012. 32(1): p. 215-22.
    34. Pickles, C. and J. O., An Introduction to the Physiology of Hearing (4th ed.). 2012.
    35. Parasuraman, R., The attentive brain Conflict, Target Detection and Cognitive Control, ed. M.I. Posner and G.J. DiGirolamo. 1998: Cambridge, Mass. : MIT Press.
    36. Desikan, R.S., et al., An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 2006. 31(3): p. 968-980.
    37. Eickhoff, S.B., et al., A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage, 2005. 25(4): p. 1325-35.
    38. Lancaster, J.L., et al., Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp, 2000. 10(3): p. 120-31.
    39. Briggman, K.L. and W. Denk, Towards neural circuit reconstruction with volume electron microscopy techniques. Curr Opin Neurobiol, 2006. 16(5): p. 562-70.
    40. Lichtman, J.W., J. Livet, and J.R. Sanes, A technicolour approach to the connectome. Nat Rev Neurosci, 2008. 9(6): p. 417-22.
    41. Smith, S.J., Circuit reconstruction tools today. Curr Opin Neurobiol, 2007. 17(5): p. 601-8.
    42. Calamante, F., et al., Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain. Neuroimage, 2013. 70: p. 199-210.

    無法下載圖示 校內:2019-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE