簡易檢索 / 詳目顯示

研究生: 余昇鴻
Yu, Sheng-Hung
論文名稱: 風波耦合效應對浮動太陽光電板之氣動力及浮動載台運動特性研究
Motion Characteristics of the Floating Solar Photovoltaic System under Wind/Wave Coupling Effects
指導教授: 楊瑞源
Yang, Ray-Yeng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 111
中文關鍵詞: 風波耦合交互作用太陽光電板氣動力浮動載台運動特性水工模型試驗纜繩張力
外文關鍵詞: Wind wave coupling interaction, aerodynamic force of solar photovoltaic panel, motion characteristics of floating PV platform, single/array system, mooring force
相關次數: 點閱:136下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣位於低緯度地區,擁有豐富陽光資源,為適合發展太陽能源之地區。然因位於颱風行經潛在路徑,使太陽能發電系統的安全性備受考驗。浮式太陽能發電系統係由太陽光電板及浮動載台系統結合而成,近年來水面型太陽能系統設置量雖增加,但太陽光電系統的研究仍以地面型較常見。本研究擬選取臺灣彰濱工業區崙尾水道180 MW浮式太陽能發電場址為目標海域,旨在研究浮動式太陽光電系統本身特性,以及漂浮在常態海況及颱風等極端條件下之生存性。
    本研究擬透過數值模擬ANSYS AQWA及ANSYS FLUENT與水工模型試驗等方法,探討單板/陣列太陽光電浮台系統在風、波耦合情況下,太陽光電板的氣動力現象及浮動載台運動特性、繫纜錨碇力。研究結果發現浮動式太陽光電浮台安裝於高頻率波浪條件下之海域易發生共振現象,波浪與風推力耦合作用下,波浪對浮台運動行為影響較劇烈,風力對浮台漂移運動及繩張力影響較劇烈。而在50年回歸期波浪條件及10年回歸期風速條件下,浮台俯仰角度變化量約±6度,顯示浮台在淺水海域具一定生存性。由氣動力結果得知,隨著波、風向條件改變,光電板之壓力分布亦有所偏移,且因遮蔽效應影響,迎風面之第一排板面所受壓力相較其餘各排所受壓力較大,在隨波浪週期變化下,升力係數隨波浪週期增加而減少,在風向為0度時有最大升力,板面迎風處及渦流形成區域容易造成光電板損壞。

    Taiwan is located in a low latitude area and has sufficient solar energy sources, which is suitable for the development of solar energy regions. However, the floating solar PV system may be damaged due to typhoon passing through Taiwan. The purpose of this research is to analyze the stability of the floating platform under extreme conditions. This study uses numerical simulation and experiment to analyze the aerodynamic phenomena of the solar panels, the motion characteristics and tension of the single-plate/array floating platform in the case of wind and wave coupling. The results of this study show that the floating PV system may resonate in shallow waters. Wave has a great influence on the stability of the floating platform, and the floating platform in this study is survivable under extreme conditions. The wind causes a large drift of the floating platform. The surface pressure patterns show that the windward surface and the vortex area are likely to cause damage to the PV panel.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 前言 1 1-1研究背景 1 1-2文獻回顧 3 1-3研究目的 10 第二章 研究方法 13 2-1研究方法及流程 13 2-2目標場址 14 2-3 AQWA介紹及理論 16 2-4 FLUENT介紹及理論 22 2-5 數值模擬條件 26 2-5-1太陽光電浮台設計 26 2-5-2繫纜條件 35 2-5-3 CFD模型及網格建立 37 2-5-4模擬試次 37 2-6水工模型試驗條件 39 2-6-1模型律 39 2-6-2實驗步驟 40 2-6-3實驗儀器 41 2-6-4實驗試次 44 2-6-5實驗儀器率定及場地配置 45 第三章 數值模擬結果 51 3-1浮台水動力模擬結果 51 3-1-1頻域分析結果 51 3-1-2時域分析結果 59 3-1-3機率密度分析結果 70 3-1-4纜繩張力分析結果 72 3-2太陽光電板氣動力分析 73 3-2-1壓力係數分析 73 3-2-2升力係數分析 85 第四章 水工模型試驗結果 89 4-1自由衰減試驗結果 89 4-2陣列太陽光電浮台運動反應分析 90 4-2-1規則波之陣列太陽光電浮台運動反應分析 90 4-2-2不規則波之陣列太陽光電浮台運動反應分析 91 4-2-3不規則波與風耦合之陣列太陽光電浮台運動反應分析 94 4-3纜繩張力分析 97 第五章 結果與討論 99 5-1單板與陣列太陽光電浮台數值模擬結果比較 99 5-2陣列太陽光電浮台數值模擬與實驗結果比較 103 第六章 結論與建議 107 6-1結論 107 6-2建議 108 參考文獻 109

    ANSYS. ANSYS Fluent Theory Guide.
    ANSYS. Aqwa Theory Manual: Ansys Inc.
    Bienkiewicz, B., & Sun, Y. (1992). Local wind loading on the roof of a low-rise. Journal of Wind Engineering and Industrial Aerodynamics, 45, 11-24.
    Campana, P. E., Wästhage, L., Nookuea, W., Tan, Y., & Yan, J. (2019). Optimization and assessment of floating and floating-tracking PV systems integrated in on- and off-grid hybrid energy systems. Solar Energy, 177, 782-795. doi:10.1016/j.solener.2018.11.045
    Choi, Y.-K. (2014). A Study on Power Generation Analysis of Floating PV System Considering Environmental Impact. International Journal of Software Engineering and Its Applications, 8(1), 75-84. doi:10.14257/ijseia.2014.8.1.07
    Chou, C.-C., Chung, K.-M., & Chang, K.-C. (2014). Wind Loads of Solar Water Heaters: Wind Incidence Effect. Journal of Aerodynamics, 2014, 1-10. doi:10.1155/2014/835091
    Chuang, T.-C., Yang, W.-H., & Yang, R.-Y. (2021). Experimental and numerical study of a barge-type FOWT platform under wind and wave load. Ocean Engineering, 230. doi:10.1016/j.oceaneng.2021.109015
    Chung, K.-M., Chang, K.-C., & Chou, C.-C. (2011). Wind loads on residential and large-scale solar collector models. Journal of Wind Engineering and Industrial Aerodynamics, 99(1), 59-64. doi:10.1016/j.jweia.2010.10.008
    Chung, K., Chang, K., & Liu, Y. (2008). Reduction of wind uplift of a solar collector model. Journal of Wind Engineering and Industrial Aerodynamics, 96(8-9), 1294-1306. doi:10.1016/j.jweia.2008.01.012
    DNV, G. (2021). DNVGL-RP-0584Design_-development-and-operation-of-floating-solar-photovoltaic-systems. In: DNV GL.
    Frandsen, J. B. (2004). Sloshing motions in excited tanks. Journal of Computational Physics, 196(1), 53-87. Retrieved from https://www.sciencedirect.com/science/article/pii/S0021999103005862. doi:https://doi.org/10.1016/j.jcp.2003.10.031
    Jamalludin, M. A. S., Sukki, F. M., Bakar, S. H. A., Ramlee, F., Munir, A. B., Bani, N. A., . . . Sellami, N. (2019). Potential of floating solar technology in Malaysia. International Journal of Power Electronics and Drive Systems (IJPEDS), 10(3). doi:10.11591/ijpeds.v10.i3.pp1638-1644
    Kim, S.-H., Yoon, S.-J., Choi, W., & Choi, K.-B. (2016). Application of Floating Photovoltaic Energy Generation Systems in South Korea. Sustainability, 8(12). doi:10.3390/su8121333
    Kopp, G. A., Farquhar, S., & Morrison, M. J. (2012). Aerodynamic mechanisms for wind loads on tilted, roof-mounted, solar arrays. Journal of Wind Engineering and Industrial Aerodynamics, 111, 40-52. doi:10.1016/j.jweia.2012.08.004
    Liu, L., Wang, Q., Lin, H., Li, H., Sun, Q., & wennersten, R. (2017). Power Generation Efficiency and Prospects of Floating Photovoltaic Systems. Energy Procedia, 105, 1136-1142. doi:10.1016/j.egypro.2017.03.483
    Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. doi:10.2514/3.12149
    Oliveira-Pinto, S., & Stokkermans, J. (2020). Assessment of the potential of different floating solar technologies – Overview and analysis of different case studies. Energy Conversion and Management, 211. doi:10.1016/j.enconman.2020.112747
    Rosa-Clot, M., & Tina, G. M. (2020). Current Status of FPV and Trends. In Floating PV Plants (pp. 9-18).
    Sahu, A., Yadav, N., & Sudhakar, K. (2016). Floating photovoltaic power plant: A review. Renewable and Sustainable Energy Reviews, 66, 815-824. doi:10.1016/j.rser.2016.08.051
    SHIH, T.-H., LIOU, W. W., SHABBIR, A., YANG, Z., & ZHU, J. (1995). A new k-e eddy-viscosity model for high Reynolds number turbulent flows. Compurers Fluid, 24, 227-238.
    Silvério, N. M., Barros, R. M., Tiago Filho, G. L., Redón-Santafé, M., Santos, I. F. S. d., & Valério, V. E. d. M. (2018). Use of floating PV plants for coordinated operation with hydropower plants: Case study of the hydroelectric plants of the São Francisco River basin. Energy Conversion and Management, 171, 339-349. doi:10.1016/j.enconman.2018.05.095
    Su, K.-C., Chung, K.-M., & Hsu, S.-T. (2018). Numerical simulation of wind loads on solar panels. Modern Physics Letters B, 32(12n13), 1840009.
    Su, K.-C., Chung, P.-H., & Yang, R.-Y. (2020). Numerical simulation of wind loads on an offshore PV panel. Journal of Mechanics, 37, 53-62. doi:10.1093/jom/ufaa010/6015294
    Trapani, K., & Redón Santafé, M. (2015). A review of floating photovoltaic installations: 2007-2013. Progress in Photovoltaics: Research and Applications, 23(4), 524-532. doi:10.1002/pip.2466
    Where Sun Meets Water-Floating Solar Market Report. (2018). Retrieved from http://documents1.worldbank.org/curated/en/579941540407455831/pdf/Floating-Solar-Market-Report-Executive-Summary.pdf
    張明輝. (2014). 水上發電機組浮動平台與其錨泊系統之技術開發 (行政院原子能委員會 委託研究計畫研究報告). Retrieved from
    張明輝. (2015). 水上發電機組浮動平台與其錨泊系統之技術開發 (行政院原子能委員會 委託研究計畫研究報告). Retrieved from
    陳若華. (2015). 陽光屋頂耐風評估與設計準則 (內政部建築研究所專題研究計畫報告). Retrieved from https://ws.moi.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvT2xkRmlsZV9BYnJpX0dvdi9yZXNlYXJjaC8yNTMyLzE0NjE4MTU3NDQwLnBkZg%3d%3d&n=6Zm95YWJ5bGL6aCC6ICQ6aKo6KmV5Lyw6IiH6Kit6KiI5rqW5YmHLeaIkOaenOWgseWRii5wZGY%3d
    黃煌煇. (2006). 彰工計畫遮蔽成果報告 (經濟部國營事業委員會). Retrieved from
    彰濱工業區水面型太陽能發電系統工程概述. (2020). Retrieved from http://www.cie.org.tw/cms/JournalFiles/10903_chapter08.pdf
    鍾光民. (2017). 低層平屋頂建築剪切流生成對陣列式太陽能光電板風荷載影響研究 (內政部建築研究所委託研究期末報告). Retrieved from https://ws.moi.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvT2xkRmlsZV9BYnJpX0dvdi9yZXNlYXJjaC8yNzYxLzE1MjE1MTg3MDR4ZjNhODQucGRm&n=5L2O5bGk5bmz5bGL6aCC5bu656%2BJ5Ymq5YiH5rWB55Sf5oiQ5bCN6Zmj5YiX5byP5aSq6Zm96IO95YWJ6Zu75p2%2F6aKo6I236LyJ5b2x6Z%2B%2F56CU56m2LnBkZg%3D%3D

    下載圖示 校內:2023-07-31公開
    校外:2023-07-31公開
    QR CODE