| 研究生: |
余昇鴻 Yu, Sheng-Hung |
|---|---|
| 論文名稱: |
風波耦合效應對浮動太陽光電板之氣動力及浮動載台運動特性研究 Motion Characteristics of the Floating Solar Photovoltaic System under Wind/Wave Coupling Effects |
| 指導教授: |
楊瑞源
Yang, Ray-Yeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 風波耦合交互作用 、太陽光電板氣動力 、浮動載台運動特性 、水工模型試驗 、纜繩張力 |
| 外文關鍵詞: | Wind wave coupling interaction, aerodynamic force of solar photovoltaic panel, motion characteristics of floating PV platform, single/array system, mooring force |
| 相關次數: | 點閱:136 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣位於低緯度地區,擁有豐富陽光資源,為適合發展太陽能源之地區。然因位於颱風行經潛在路徑,使太陽能發電系統的安全性備受考驗。浮式太陽能發電系統係由太陽光電板及浮動載台系統結合而成,近年來水面型太陽能系統設置量雖增加,但太陽光電系統的研究仍以地面型較常見。本研究擬選取臺灣彰濱工業區崙尾水道180 MW浮式太陽能發電場址為目標海域,旨在研究浮動式太陽光電系統本身特性,以及漂浮在常態海況及颱風等極端條件下之生存性。
本研究擬透過數值模擬ANSYS AQWA及ANSYS FLUENT與水工模型試驗等方法,探討單板/陣列太陽光電浮台系統在風、波耦合情況下,太陽光電板的氣動力現象及浮動載台運動特性、繫纜錨碇力。研究結果發現浮動式太陽光電浮台安裝於高頻率波浪條件下之海域易發生共振現象,波浪與風推力耦合作用下,波浪對浮台運動行為影響較劇烈,風力對浮台漂移運動及繩張力影響較劇烈。而在50年回歸期波浪條件及10年回歸期風速條件下,浮台俯仰角度變化量約±6度,顯示浮台在淺水海域具一定生存性。由氣動力結果得知,隨著波、風向條件改變,光電板之壓力分布亦有所偏移,且因遮蔽效應影響,迎風面之第一排板面所受壓力相較其餘各排所受壓力較大,在隨波浪週期變化下,升力係數隨波浪週期增加而減少,在風向為0度時有最大升力,板面迎風處及渦流形成區域容易造成光電板損壞。
Taiwan is located in a low latitude area and has sufficient solar energy sources, which is suitable for the development of solar energy regions. However, the floating solar PV system may be damaged due to typhoon passing through Taiwan. The purpose of this research is to analyze the stability of the floating platform under extreme conditions. This study uses numerical simulation and experiment to analyze the aerodynamic phenomena of the solar panels, the motion characteristics and tension of the single-plate/array floating platform in the case of wind and wave coupling. The results of this study show that the floating PV system may resonate in shallow waters. Wave has a great influence on the stability of the floating platform, and the floating platform in this study is survivable under extreme conditions. The wind causes a large drift of the floating platform. The surface pressure patterns show that the windward surface and the vortex area are likely to cause damage to the PV panel.
ANSYS. ANSYS Fluent Theory Guide.
ANSYS. Aqwa Theory Manual: Ansys Inc.
Bienkiewicz, B., & Sun, Y. (1992). Local wind loading on the roof of a low-rise. Journal of Wind Engineering and Industrial Aerodynamics, 45, 11-24.
Campana, P. E., Wästhage, L., Nookuea, W., Tan, Y., & Yan, J. (2019). Optimization and assessment of floating and floating-tracking PV systems integrated in on- and off-grid hybrid energy systems. Solar Energy, 177, 782-795. doi:10.1016/j.solener.2018.11.045
Choi, Y.-K. (2014). A Study on Power Generation Analysis of Floating PV System Considering Environmental Impact. International Journal of Software Engineering and Its Applications, 8(1), 75-84. doi:10.14257/ijseia.2014.8.1.07
Chou, C.-C., Chung, K.-M., & Chang, K.-C. (2014). Wind Loads of Solar Water Heaters: Wind Incidence Effect. Journal of Aerodynamics, 2014, 1-10. doi:10.1155/2014/835091
Chuang, T.-C., Yang, W.-H., & Yang, R.-Y. (2021). Experimental and numerical study of a barge-type FOWT platform under wind and wave load. Ocean Engineering, 230. doi:10.1016/j.oceaneng.2021.109015
Chung, K.-M., Chang, K.-C., & Chou, C.-C. (2011). Wind loads on residential and large-scale solar collector models. Journal of Wind Engineering and Industrial Aerodynamics, 99(1), 59-64. doi:10.1016/j.jweia.2010.10.008
Chung, K., Chang, K., & Liu, Y. (2008). Reduction of wind uplift of a solar collector model. Journal of Wind Engineering and Industrial Aerodynamics, 96(8-9), 1294-1306. doi:10.1016/j.jweia.2008.01.012
DNV, G. (2021). DNVGL-RP-0584Design_-development-and-operation-of-floating-solar-photovoltaic-systems. In: DNV GL.
Frandsen, J. B. (2004). Sloshing motions in excited tanks. Journal of Computational Physics, 196(1), 53-87. Retrieved from https://www.sciencedirect.com/science/article/pii/S0021999103005862. doi:https://doi.org/10.1016/j.jcp.2003.10.031
Jamalludin, M. A. S., Sukki, F. M., Bakar, S. H. A., Ramlee, F., Munir, A. B., Bani, N. A., . . . Sellami, N. (2019). Potential of floating solar technology in Malaysia. International Journal of Power Electronics and Drive Systems (IJPEDS), 10(3). doi:10.11591/ijpeds.v10.i3.pp1638-1644
Kim, S.-H., Yoon, S.-J., Choi, W., & Choi, K.-B. (2016). Application of Floating Photovoltaic Energy Generation Systems in South Korea. Sustainability, 8(12). doi:10.3390/su8121333
Kopp, G. A., Farquhar, S., & Morrison, M. J. (2012). Aerodynamic mechanisms for wind loads on tilted, roof-mounted, solar arrays. Journal of Wind Engineering and Industrial Aerodynamics, 111, 40-52. doi:10.1016/j.jweia.2012.08.004
Liu, L., Wang, Q., Lin, H., Li, H., Sun, Q., & wennersten, R. (2017). Power Generation Efficiency and Prospects of Floating Photovoltaic Systems. Energy Procedia, 105, 1136-1142. doi:10.1016/j.egypro.2017.03.483
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. doi:10.2514/3.12149
Oliveira-Pinto, S., & Stokkermans, J. (2020). Assessment of the potential of different floating solar technologies – Overview and analysis of different case studies. Energy Conversion and Management, 211. doi:10.1016/j.enconman.2020.112747
Rosa-Clot, M., & Tina, G. M. (2020). Current Status of FPV and Trends. In Floating PV Plants (pp. 9-18).
Sahu, A., Yadav, N., & Sudhakar, K. (2016). Floating photovoltaic power plant: A review. Renewable and Sustainable Energy Reviews, 66, 815-824. doi:10.1016/j.rser.2016.08.051
SHIH, T.-H., LIOU, W. W., SHABBIR, A., YANG, Z., & ZHU, J. (1995). A new k-e eddy-viscosity model for high Reynolds number turbulent flows. Compurers Fluid, 24, 227-238.
Silvério, N. M., Barros, R. M., Tiago Filho, G. L., Redón-Santafé, M., Santos, I. F. S. d., & Valério, V. E. d. M. (2018). Use of floating PV plants for coordinated operation with hydropower plants: Case study of the hydroelectric plants of the São Francisco River basin. Energy Conversion and Management, 171, 339-349. doi:10.1016/j.enconman.2018.05.095
Su, K.-C., Chung, K.-M., & Hsu, S.-T. (2018). Numerical simulation of wind loads on solar panels. Modern Physics Letters B, 32(12n13), 1840009.
Su, K.-C., Chung, P.-H., & Yang, R.-Y. (2020). Numerical simulation of wind loads on an offshore PV panel. Journal of Mechanics, 37, 53-62. doi:10.1093/jom/ufaa010/6015294
Trapani, K., & Redón Santafé, M. (2015). A review of floating photovoltaic installations: 2007-2013. Progress in Photovoltaics: Research and Applications, 23(4), 524-532. doi:10.1002/pip.2466
Where Sun Meets Water-Floating Solar Market Report. (2018). Retrieved from http://documents1.worldbank.org/curated/en/579941540407455831/pdf/Floating-Solar-Market-Report-Executive-Summary.pdf
張明輝. (2014). 水上發電機組浮動平台與其錨泊系統之技術開發 (行政院原子能委員會 委託研究計畫研究報告). Retrieved from
張明輝. (2015). 水上發電機組浮動平台與其錨泊系統之技術開發 (行政院原子能委員會 委託研究計畫研究報告). Retrieved from
陳若華. (2015). 陽光屋頂耐風評估與設計準則 (內政部建築研究所專題研究計畫報告). Retrieved from https://ws.moi.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvT2xkRmlsZV9BYnJpX0dvdi9yZXNlYXJjaC8yNTMyLzE0NjE4MTU3NDQwLnBkZg%3d%3d&n=6Zm95YWJ5bGL6aCC6ICQ6aKo6KmV5Lyw6IiH6Kit6KiI5rqW5YmHLeaIkOaenOWgseWRii5wZGY%3d
黃煌煇. (2006). 彰工計畫遮蔽成果報告 (經濟部國營事業委員會). Retrieved from
彰濱工業區水面型太陽能發電系統工程概述. (2020). Retrieved from http://www.cie.org.tw/cms/JournalFiles/10903_chapter08.pdf
鍾光民. (2017). 低層平屋頂建築剪切流生成對陣列式太陽能光電板風荷載影響研究 (內政部建築研究所委託研究期末報告). Retrieved from https://ws.moi.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvT2xkRmlsZV9BYnJpX0dvdi9yZXNlYXJjaC8yNzYxLzE1MjE1MTg3MDR4ZjNhODQucGRm&n=5L2O5bGk5bmz5bGL6aCC5bu656%2BJ5Ymq5YiH5rWB55Sf5oiQ5bCN6Zmj5YiX5byP5aSq6Zm96IO95YWJ6Zu75p2%2F6aKo6I236LyJ5b2x6Z%2B%2F56CU56m2LnBkZg%3D%3D