| 研究生: |
曾郁雯 Tseng, Yu-Wen |
|---|---|
| 論文名稱: |
以磁性奈米鐵處理水中砷之研究 A study on the Wastewater Arsenic Removal by using nano-Magnetic Iron |
| 指導教授: |
李文智
Li, Wun-Jhih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 四氧化三鐡 、重金屬 、去除 、表面改質 、吸附 、田口實驗設計法 |
| 外文關鍵詞: | Fe3O4, heavy metals, removal, surface modification, adsorption, Taguchi experimental design |
| 相關次數: | 點閱:95 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多工業在生產過程中所排出的廢水含有高濃度重金屬,例如:電子產業所排放之廢水中就含有鋁、砷、鋇、鎘、六價鉻、銅、鐵、鉛、錳、汞、鎳、硒、銀及鋅等重金屬。磁性奈米顆粒具製作成本低廉、設備維護成本低、可重複使用之優點,可改善傳統廢水處理程序以解決重金屬污染物的問題。傳統未改質奈米顆粒Fe3O4 (Fe3O4 MNP)應用於廢水處理過程中往往都會有嚴重的團聚現象進而減少吸附能力,故本研究選用腐質酸為改質劑,並評估腐植酸表面改質Fe3O4 (Fe3O4/Human acid)奈米顆粒去除廢水中重金屬砷之可行性。
藉由SEM、ESEM-EDS與XRD特性分析可證明所合成的Fe3O4為奈米級顆粒,具有磁性且改質過後可改善其團聚現象。Fe3O4/Human acid比表面積值為92.2 m2/g。田口實驗設計法以Fe3O4/Human acid去除重金屬砷,其最佳去除條件為pH值為 5、劑量5 g/L、接觸時間180 min及陰陽離子濃度20 mg/L其去除率達94.3%。反應動力試驗吸附模式符合pseudo-second order。於Fe3O4/Human acid劑量3 g/L時,其平衡吸附量qe為0.421 mg/g,二階速率k2為 0.156 g mg-1 min-1;Fe3O4/Human acid劑量5 g/L時,其平衡吸附量qe為0.452 mg/g,二階速率k2為 0.222 g mg-1 min-1。
Many industries discharged wastewater, during the production process, containing high concentrations of heavy metals, such as: wastewater discharged from the electronics industry contains aluminum, arsenic, barium, cadmium, hexavalent chromium, copper, iron, lead, manganese, mercury, nickel, selenium, silver and zinc and other heavy metals. Fe3O4 magnetic nanoparticles (Fe3O4 /MNP) have been widely used to resolve environmental problems, because of their extremely small size, absence of internal diffusion resistance, low cost, high magnetism, and high separation convenience. Bare Fe3O4 MNP tends to agglomerate into larger particles and then reduce their sorption capacity in the wastewater treatment process. This is a major disadvantage. Therefore, this study investigates the performance of humic acid modified Fe3O4 (Fe3O4/ Humic acid) in removing the Arsenic from aqueous solution.
The SEM, ESEM-EDS and XRD analysis showed that the synthesized Fe3O4/Humic acid nanoparticles were magnetic and could solve the agglomeration problem. The mean specific surface area of the Fe3O4/ Humic acid was 92.2 m2/g. The optimal conditions of the Taguchi experimental design for the removal of As (V) aqueous solutions by Fe3O4/ Humic acid were a pH 5, dosage of 5 g/L, and a contact time 180 min. The removal efficiency attained under these conditions were 94.3%. The kinetic studies on the adsorption of arsenic showed that the process complied with pseudo-second order kinetics. Experiments carried to test the removal of arsenic from aqueous solutions by Fe3O4/ Humic acid with pseudo-second order kinetics, showed that when the dose of Fe3O4/ Humic acid was 3 g/L, the sorption capacity at equilibrium (qe) was 0.421 mg/g, and rate constant (k2) was 0.156 g mg-1 min-1. When the dose of Fe3O4/ Humic acid was 5 g/L the sorption capacity at equilibrium (qe) was 0.452 mg/g, and rate constant (k2) was 0.222 g mg-1 min-1.
References
Ahmed, S., Chughtai, S. and Keane, M.A. (1998). The removal of cadmium and lead from aqueous solution by ion exchange with na–y zeolite. Sep. Purif. Technol. 13: 57–64.
Alyuz, B. and Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J. Hazard. Mater. 167: 482-488.
Argun, M.E. (2008). Use of clinoptilolite for the removal of nickel ions from water: Kinetics and thermodynamics. J. Hazard. Mater. 150: 587-595.
Athanasiadis, K. and Helmreich, B. (2005). Influence of chemical conditioning on the ion exchange capacity and on kinetic of zinc uptake by clinoptilolite. Water Res. 39: 1527-1532.
Banerjee, S.S. and Chen, D.H. (2007). Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J. Hazard. Mater. 147: 792–799.
Bang, J.H. and Suslick, K.S. (2007). Sonochemical synthesis of nanosized hollow hematite. J. Am. Chem. Soc. 129: 2242.
Bose, P., Bose, M.A. and Kumar, S. (2002). Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc, and cyanide. Adv. Environ. Res. 7: 179-195.
Chang, Y.C., Chang, S.W. and Chen, D.H. (2006). Magnetic chitosan nanoparticles: Studies on chitosan binding and adsorption of co(ii) ions. React. Funct. Polym. 66: 335-341.
Chang , Y.C. and Cnen, D.H. (2005). Preparation and adsorption properties of monodisperse chitosan-bound fe3o4 magnetic nanoparticles for removal of cu(ii) ions. J. Colloid. Interf. Sci. 283: 446-451.
Charerntanyarak, L. (1999). Heavy metals removal by chemical coagulation and precipitation. Water Sci. Technol. 39: 135-138.
Chen, A., Zeng, G., Chen, G., Hu, X., Yan, M., Guan, S., Shang, C., Lu, L., Zou, Z. and Xie, G. (2012). Novel thiourea-modified magnetic ion-imprinted chitosan/tio2 composite for simultaneous removal of cadmium and 2,4-dichlorophenol. Chem. Eng. J. 191: 85-94.
Chen, R., Zhi, C., Yang, H., Bando, Y., Zhang, Z., Sugiur, N. and Golberg, D. (2011). Arsenic (v) adsorption on fe 3 o 4 nanoparticle-coated boron nitride nanotubes. Journal of Colloid and Interface Science 359: 261-268.
Doula, M.K. (2009). Simultaneous removal of cu, mn and zn from drinking water with the use of clinoptilolite and its fe-modified form. Water Res. 43: 3659-3672.
Doula, M.K. and Dimirkou, A. (2008). Use of an iron-overexchanged clinoptilolite for the removal of cu2+ ions from heavily contaminated drinking water samples. J. Hazard. Mater. 151: 738-745.
Faraji, M., Yamini, Y., Saleh, A., Rezaee, M., Ghambarian, M. and Hassani, R. (2010). A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples. Anal. Chim. Acta. 659: 172-177.
Febrianto, J., Kosasih, A.N., Sunarso, J. and Ju, Y.H. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J. Hazard. Mater. 162: 616-645.
Fenglian, F. and Wang, Q. (2011a). Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92: 407-418.
Fenglian, F. and Wang, Q. (2011b). Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage 92: 407-418
Friberg, L., Nordberg, G.F. and Vouk, V.B. (1979). Handbook on the toxicology of metals. Amsterdam.: Elsevier/North-Holland.
Giasuddin, A.M., Kanel, S. and Heechulchoi (2007). Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ. Sci. Technol 41: 2022-2027.
Gode, F. and Pehlivan, E. (2006). Removal of chromium (iii) from aqueous solutions using lewatit s 100: The effect of ph, time, metal concentration and temperature. J. Hazard. Mater. 136: 330-337.
Guo, L., Ye, P., Wang, J., Fu, F. and Wu, Z. (2015). Three-dimensional fe 3 o 4 -graphene macroscopic composites for arsenic and arsenate removal. Journal of Hazardous Materials 298: 28-35.
Gupta, S.K. and Chen, K.Y. (1978). Arsenic removal by adsorption JWPCF: 493.
H, S.P. (1997). Sales process engineering: A personal workshop. Milwaukee. Wisconsin: ASQ Quality Press: 237.
Hong, R.Y., Li, J.H., Zhang, S.Z., Li, H.Z., Zheng, Y., Ding, J.M. and Wei, D.G. (2009). Preparation and characterization of silica-coated fe3o4 nanoparticles used as precursor of ferrofluids. Appl. Surf. Sci. 255: 3485–3492.
Horng, L.L. and Clifford, D. (1997). The behavior of polyprotic anions in ion-exchange resins. Reac. Polym 35: 41-54.
Illies, E. and Tomba´cz, E. (2006). The effect of humic acid adsorption on ph-dependent surface charging and aggregation of magnetite nanoparticles. J. Colloid Interface Sci. 295: 15-123.
Inglezakis, V.J., Stylianou, M.A., Gkantzou, D. and Loizidou, M.D. (2007). Removal of pb(ii) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination. 210: 248-256.
Jean, J.-S., Bundschuh, J. and Bhattacharya, P. (2010). Arsenic in geosphere and human diseases. The Netherlands: CRC Press: 595.
Juttner, K., Galla, U. and Schmieder, H. (2000). Electrochemical approaches to environmental problems in the process industry. Electrochim. Acta. 45: 2575-2594.
Kadirvelu, K., Thamaraiselvi, K. and Namasivayam, C. (2001). Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology 76: 63-65.
Kang, S.Y., Lee, J.U., Moon, S.H. and Kim, K.W. (2004). Competitive adsorption characteristics of co2+, ni2+, and cr3+ by irn-77 cation exchange resin in synthesized wastewater. Chemosphere. 56: 141-147.
Kim, D.K., Zhang, Y. and Voit, W. (2001). Systhesis and characterization of sufactant—coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mate. 225: 30-36.
Kim, Y.S., Nakatsuka, K. and Fujita, T. (1999). Application of hydrophilic magnetic fluid to oil seal. J. Magn. Magn. Mate. 201: 361-363.
Ku, Y. and Jung, I.L. (2001). Photocatalytic reduction of cr(vi) in aqueous solutions by uv irradiation with the presence of titanium dioxide. Water Res. 35: 135-142.
Kumari, M., Jr., C.U.P. and Mohan, D. (2015). Heavy metals [chromium (vi) and lead (ii)] removal from water using mesoporous magnetite (fe 3 o 4 ) nanospheres. Colloid and Interface Science 442: 120-132.
Kurniawan, T.A., Chan, G.Y.S., Lo, W.H. and Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118: 83-98.
Liu, J.F., Zhao, Z.S. and Jiang, G.B. (2008a). Coating fe3o4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science and Technology 42: 6949–6954.
Liu, J.F., Zhao, Z.S. and Jiang, G.B. (2008b). Coating fe3o4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science & Technology 42: 6949-6954.
Liu, T., Rao, P. and Lo, I.M.C. (2009). Influences of humic acid, bicarbonate and calcium on cr(vi) reductive removal by zero-valent iron. Science of the Total Environment 407: 3407–3414.
Liu, X., Duan, X., Qin, Q., Wang, Q. and Zheng, W. (2013). Ionic liquid-assisted solvothermal synthesis of oriented self-assembled fe3o4 nanoparticles into monodisperse nanoflakes. CrystEngComm 15: 3284-3287.
Liu, Z., Zhang, F.-S. and Sasai, R. (2010). Arsenate removal from water using fe 3 o 4 -loaded activated carbon prepared from waste biomass. Chemical Engineering Journal 160: 57-62.
Luiz, R.J., Alain, R., B., S.M., Alberto, B.C. and Pedro, P.M. (2008). Electrodeposition of copper on titanium wires: Taguchi experimental design approach. Journal of Materials Processing Technology 209: 1181–1188.
Lv, X., Hu, Y., Tang, J., Sheng, T., Jiang, G. and Xu, X. (2013). Effects of co-existing ions and natural organic matter on removal of chromium (vi) from aqueous solution by nanoscale zero valent iron (nzvi)-fe3o4 nanocomposites. Chemical Engineering Journal 218: 55–64.
Mahmoud, M.E., Abdelwahab, M.S. and Fathallah, E.M. (2013). Design of novel nano-sorbents based on nano-magnetic iron oxide-bound-nano-silicon oxide-immobilized-triethylenetetramine for implementation in water treatment of heavy metals. Chem. Eng. J. 233: 318-327.
Mehta, R., Upadhyay, R., Charles, S. and Ramchand, C. (1997). Direct binding of protein to magnetic particles. Biotechnol. Tech. 11: 493-496.
Motsi, T., Rowson, N.A. and Simmons, M.J.H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 92: 42-48.
Mubarak, N.M., Sahu, J.N., Abdullah, E.C. and Jayakumar, N.S. (2014). Removal of heavy metals from wastewater using carbon nanotubes. Separation & Purification Reviews 43: 311-338.
Murphy, E.M., Zachara, J.M. and Smith, S.C. (1990). Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ. Sci. Technol 24: 1507.
Ostroski, I.C., Barros, M.A.S.D., Silvab, E.A., Dantas, J.H., Arroyo, P.A. and Lima, O.C.M. (2009). A comparative study for the ion exchange of fe(iii) and zn(ii) on zeolite nay. J. Hazard. Mater. 161: 1404-1412.
Ou, G.-C. (2015). Removal of cadmium and copper from aqueous solutions by modified fe3o4 magnetic nanoparticles, Department of Chemical and Materials Engineering National Kaohsiung University of Applied Sciences in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Chemical and Materials Engineering, Kaohsiung, Taiwan, Republic of China.
Pankhurst, Q.A., onnolly, J., Jones, S.K. and Dobson, L. (2003). Applications of magnetic nanoparticles in biomedicine. . J. Phys. D. Appl. Phys. 36: R167-R181.
Papadopoulos, A., Fatta, D., Parperis, K., Mentzis, A., Harambous, K.J. and Loizidou, M. (2004). Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods. Sep. Purif. Technol. 39: 181-188.
Park, J., Holden, A., Chu, V., Kim, M., Rhee, A., Patel, P., Shi, Y., Linthicum, J., Walton, B. and Mckeown, K. (2009). Time-trends and congener profiles of pbdes and pcbs in california peregrine falcons (falco peregrinus). Environ. Sci. Technol. 43: 8744-8751.
Patterson, J.W. (1985). Industrial wastewater treatment technology. Butterworth Publishers,Stoneham, MA 2.
Peng, L., Qin, P., Lei, M., Zeng, Q., Song, H., Yang, J., Shao, J., Liao, B. and Gu, J. (2012). Modifying fe3o4 nanoparticles with humic acid for removal of rhodamine b in water. Journal of Hazardous Materials 209–210: 193-198.
Qdais, H.A. and Moussa, H. (2004). Removal of heavy metals from wastewater by membrane processes: A comparative study. Desalination 164: 105-110.
Qiu, J.D., Xiong, M., Liang, R.P., Peng, H.P. and Liu, F. (2009). Synthesis and characterization of fenocene modified fe3o4@au magnetic and particles and its application. Biosens. Bioelectron 24: 2649-2653.
Rao, P., Mak, M.S.H., Liu, T., Lai, K.C.K. and Lo, I.M.C. (2009). Effects of humic acid on arsenic(v) removal by zero-valent iron from groundwater with special references to corrosion products analyses. Chemosphere 75: 156–162.
Redl, F.X., Black, C.T., Papaefthymiou, G.C., Sandstrom, R.L., Yin, M., Zeng, H. and Murray, C.B. (2004). Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J. Am. Chem. Soc. 126: 14583-14599.
Ruoyu, H., Li, J., Wang, J. and Li, H. (2007). Comparison of schemes for preparing magnetic fe3o4 nanoparticles. China Particuology 5: 186-191.
Saffari, J., Mir, N., Ghanbari, D., Khandan-Barani, K., Hassanabadi, A. and Hosseini-Tabatabaei, M.R. (2015). Sonochemical synthesis of fe3o4/zno magnetic nanocomposites
and their application in photo-catalytic degradation of various
organic dyes. J Mater Sci 26: 9591–9599.
Shahalam, A.M., Al-Harthy, A. and Al-Zawhry, A. (2002). Feed water pretreatment in ro systems in the middle east. . Desalination 150: 235-245.
Shen, Y.F., Tang, J., Nie, Z.H., Wang, Y.D., Ren, Y.D., Wanga, Y., Renc, L. and Zuo, L. (2009). Preparation and application of magnetic fe3o4 nanoparticles for wastewater purification. Sep. Purif. Technol. 68: 312–319.
Sheng, G., Li, Y., Yang, X., Ren, X., Yang, S., Hu, J. and Wang, X. (2012). Efficient removal of arsenate by a versatile magnetic graphene oxide composites. RSC. Adv. 2: 12400-12407.
Singh, S., Barick, K.C. and Bahadur, D. (2011). Urface engineered magnetic nanoparticle for removal of toxic metal ions and bacterial pathogens. J. Hazard. Mater. 192: 1539-1547.
Sreenivas, R.R., Kumar, C.G., Prakasham, R.S. and Hobbs, P.J. (2008). The taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal. Biotechnology Journal 3: 510-523.
Sreenivas, R.R., Prakasham, R.S., Prasad, K.K., Rajesham, S., Sarma, P.N. and Rao, L.V. (2004). Xylitol production by candida sp.: Parameter optimization using taguchi approach. Process Biochemistry 39: 951–956.
Srivastava, N., K. and Majumder, C., B. (2008). Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J. Hazard. Mater. 151: 2008.
Sun, H., Wang, L., Zhang, R., Sui, J. and Xu, G. (2006). Treatment of groundwater polluted by arsenic compounds by zero valent iron. Journal of Hazardous Materials B129: 297–303.
Sun, S.H., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X. and Li, G.X. (2004). Monodisperse mfe2o4 (m = fe, co, mn) nanoparticles. J. Am. Chem. Soc. 126: 273-279.
Taffarel, S.R. and Rubio, J. (2009). On the removal of mn2+ ions by adsorption onto natural and activated chilean zeolites. Miner. Eng. 22: 336-343.
Tan, L., Xu, J., Xue, X., Lou, Z., Zhu, J., Baig, S.A. and Xu, X. (2014). Multifunctional nanocomposite fe3o4@sio2 –mpd/sp for selective removal of pb( ii ) and cr( vi ) from aqueous solutions. RSC Advances 4: 45920-45929.
Tan, Y.Q., Chen, M. and Hao, Y.M. (2012). High efficient removal of pb (ii) by amino-functionalized fe3o4 magnetic nano-particles. Chemical Engineering Journal 191: 104-111.
Tomitaka, A., Koshi, T., Hatsugai , S., Yamada, T. and Takemura, Y. (2011). Magnetic characterization of surface-coated magnetic nanoparticles for biomedical application. J. Magn. Magn. Mater. 323: 1398-1403.
Tran, H.V., Tran, L.D. and Nguyen , T.N. (2010). Preparation of chitosan/magnetite composite beads and their application for removal of pb(ii) and ni(ii) from aqueous solution. Mater. Sci. Eng. C. 30: 304–310.
Tunay, O. and Kabdasli, N.I. (1994). Hydroxide precipitation of complexed metals. Water Res. 28: 2117-2124.
Tyrovola, K., Nikolaidis, N.P., Veranis, N., Kallithrakas-Kontos, N. and Koulouridakis, P.E. (2006). Arsenic removal from geothermal waters with zero-valent iron—effect of temperature, phosphate and nitrate. Water Research 40: 2375-2386.
Umut, E. (2013). Surface modification of nanoparticles used in biomedical applications. Modern Surface Engineering Treatments.
Wang, H., Yuan, X., Wu, Y., Chen, X., Leng, L., Wang, H., Li, H. and Zeng, G. (2015). Facile synthesis of polypyrrole decorated reduced graphene oxide–fe3o4 magnetic composites and its application for the cr(vi) removal. Chemical Engineering Journal 262: 597–606.
Wang, L.K., Vaccari, D.A., Li, Y. and Shammas, N.K. (2004). Chemical precipitation, in: L.K. Wang, y.T. Hung, n.K. Shammas (eds.), physicochemical treatment processes. Humana Press, New Jersey Humana Press, New Jersey: 141-198.
Wang, X., Chen, C., Chang, Y. and Liu, H. (2009). Dechlorination of chlorinated methanes by pd/fe bimetallic nanoparticles. Journal of hazardous materials 161: 815-823.
Welham, N.J., Malatt, K.A. and Vukcevic, S. (2000). The stability of iron phases presently used for disposal from metallurgical system-a review Min. Eng. 13: 911-931.
Wingenfelder, U., Hansen, C., Furrer, G. and Schulin, R. (2005). Removal of heavy metals from mine water by natural zeolites. Environ. Sci. Technol. 39: 4606-4613.
Wu, W., He, Q. and Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res Lett 3: 397-415.
Xie, J., Xu, C., Kohler, N., Hou, Y. and Sun, S.H. (2007). Controlled pegylation of monodisperse fe3o4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv. Mater. 19: 3163-3166.
Xu, J., Yang, H., Fu, W., Du, K., Sui, Y., Chen, J., Zeng, Y., Li, M. and Zou, G. (2007). Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J. Magn. Magn. Mater. 309: 307-311.
Xu, M., Zhang, Y., Zhang, Z., Shen, Y., Zhao, M. and Pan, G. (2011). Study on the adsorption of ca2+, cd2+ and pb2+ by magnetic fe3o4 yeast treated with edta dianhydride. Chemical Engineering Journal 168: 737–745.
Yang, X.J., Fane, A.G. and MacNaughton, S. (2001). Removal and recovery of heavy metals from wastewater by supported liquid membranes. Sci. Technol. 43: 341-348.
Zhang, S., Niu, H., Cai, Y., Zhao, X. and Shi, Y. (2010). Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: Mnfe 2 o 4 and cofe 2 o4. Chemical Engineering Journal 158: 599-607.
Zhang, Y., Kohler, N. and Zhang, M.Q. (2002). Surface modifaction of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23: 1553-1561.
Zhao, Y.G., Shen, H.Y., Pan, S.D., Hu, M.Q. and Xia, Q.H. (2010). Preparation and characterization of amino-functionalized nano-fe3o4 magnetic polymer adsorbents for removal of chromium(vi) ions. J. Mater. Sci. 45: 5291-5301.
朱孟美 (2008). 磁性鈉米複合微粒的製備及表徵. 東北大學分析化學系 碩士論文.
李馥安 (2010). 奈米氧化鐵礦物之合成與基礎特性研究. 國立成功大學地球科學系 碩士論文.
阮國棟 (1986). 砷之污染特性及處理技術. 工業污染防治 第五卷: 156-165.
孫中溪 and 郭淑雲 (2006). 納米四氧化三鐵表面酸鹼性質研究. 高等學校化學學報 第27卷: 1351-1354.
張明毅 (2003). 田口方法簡介. 宜蘭大學生機系.
郭庭瑜 (2013). 以四氧化三鐵奈米顆粒降解電子產業排放廢水中溴化戴奧辛及多溴聯苯醚之研究. 國立成功大學環境工程學系 碩士論文.
黃坤 (2012). 磁性/介孔複合納米粒子製備和應用. 武漢理工大學 碩士論文.
葉怡成 (2009). 高等實驗計畫. 五南圖書出版股份有限公司, 台北市.
葉家玲 (2008). 磁性奈米鐵吸附水中酸性染料之特性研究. 義守大學土木與生態工程學系 碩士論文.
劉伊郎 and 陳恭 (2000). 氧化鐵 (fe3o4) 薄膜與超晶格. 國立中正大學物理雙月刊 第26卷: 592-605.
鄭幸雄 (1976). 活性污泥法去除有機物之研究. 第一屆廢水處裡技術論文集.
鄭景軒 (2003). 磁性奈米微粒之二氧化矽被覆技術之研究. 國立成功大學機械工程學系 碩士論文.
鄭燕琴 (1995). 田口品質工程技術理論與實務. 中華民國品質管制學會, 台北市.
鍾清章 (1994). 品質工程(田口方法). 中華民國品質管理學會, 台北市.