簡易檢索 / 詳目顯示

研究生: 陳家隆
Chen, Chia-Lung
論文名稱: 利用直流電漿化學氣相沉積法成長奈米碳片及其場發射測量
Carbon nanowalls grown by DC-PECVD and its field emission measurement
指導教授: 曾永華
Tzeng, Yonhua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 60
中文關鍵詞: 奈米碳片
外文關鍵詞: carbon nanowalls
相關次數: 點閱:42下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們使用直流電漿化學氣相沉積法,將二維奈米碳片成長在矽基板並且測量其電子場發射特性,我們發現較低的起始電場(獲得10 uA/cm2 所需要的電場)位在1-2 V/um。當奈米碳片成功的成長在矽基板之後,我們試著改變實驗氣體流率比值(氫氣/甲烷)跟實驗時電源供應器的電流,再觀察試片表面的變化。然後試著將奈米碳片成長在不同的基板上,例如,石墨、筆芯。電子場發射未來可以應用在發光燈泡、背光燈管或者是場發射顯示器。
    根據我們的實驗結果,要形成較明顯的奈米碳片,甲烷跟氫氣的比例必需大於6%。在奈米碳片成長在石墨塊的實驗中,由於石墨塊有較高的導電性,故其電子場發射特性會優於成長在矽基板的奈米碳片。當奈米碳片成長在筆芯頂端,其二維結構會增加筆芯的場發射特性,而筆芯的價格便宜,我們預期能夠當作場發射器使用。

    Carbon nanowalls were grown on silicon substrates by direct-current plasma enhanced chemical vapor deposition and measured the electron field emission of these coatings. It was found that the turn-on field could be as low as 1-2 V/um. After having successfully grown carbon nanowalls on silicon substrates, the composition of the feeding gas mixture, CH4/H2 and the DC discharge current, were changed to observe the morphology of the specimens. Carbon nanowalls were also grown on other substrates such as graphite and pencil lead. We expect that carbon nanowalls can be used for applications to lamp, backlights and field emission displays in the future.
    Experimental results suggest that the concentration ratio of methane and hydrogen need to be greater than 6% for carbon nanowalls to become more evidence under our experimental conditions. For carbon nanowalls grown on graphite, the electron field emission current density is higher than that of carbon nanowalls grown on silicon substrate. Carbon nanowalls were also grown on pencil leads, which exhibit excellent electron field emission properties. We expect it to be a useful process for fabricating all-carbon cold cathodes.

    中文摘要.........................................I Abstract.........................................II 目錄.............................................III 表目錄...........................................V 圖目錄...........................................VI 第一章 簡介......................................1 1.1 前言.........................................1 1.2陰極材料......................................1 1.2.1鑽石 Diamond................................1 1.2.2 奈米碳管 Carbon nanotube...................3 1.2.3奈米碳片 Carbon nanowalls...................4 1.2.4石墨奈米纖維 Graphitic nanofibers...........6 1.3電子場發射的應用..............................8 第二章 實驗基礎理論..............................12 2.1電漿..........................................12 2.1.1離子化......................................12 2.1.2激發-鬆弛 (Excitation-Relaxation)...........13 2.1.3分解 (Dissociation).........................13 2.2平均自由路徑 (Mean Free Path).................13 2.3輝光放電 (Glow discharge).....................14 2.4化學氣相沉積..................................16 2.5場發射的基本理論..............................16 第三章 實驗儀器介紹..............................18 3.1直流電漿化學氣相沉積系統 (Direct Current Plasma Enhanced Chemical Vapor Deposition system).......18 3.2場發射量測系統 (Field emission measurement system)...20 3.3實驗步驟......................................22 3.3.1基板清洗步驟................................22 3.3.2薄膜成長步驟................................22 3.4薄膜特性分析工具..............................23 3.4.1掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) ........................................23 3.4.2拉曼光譜儀 (Raman spectroscopy).............25 第四章 結果與討論................................26 4.1甲烷濃度的影響................................26 4.2改變電流的影響................................31 4.3在石墨上成長奈米碳片..........................40 4.4 在筆芯頂端成長奈米碳片.......................45 第五章 總結......................................54 第六章 未來工作..................................55 參考資料.........................................58

    [1] W. Zhu, G. P. Kochanski, S. Jin “Low-field electron emission from undoped nanostructured diamond” SCIENCE VOL 282 20 NOVEBER (1988)
    [2] W. Zhu, C. Bower, G.P. kochanski, S. Jin “Field emission property of diamond and carbon nanotubes” Diamond and Related Materials 10 1709-1713 (2001)
    [3] H. Hiraki, N. Jing, H. Zhang, H. X. Wang and A. Hiraki, “CNX (Carbon-Nano-eXit): a unique carbon-nano-structure to be employed for excellent electron-emitters,” Phys. Stat. Sol. (a) 204(9), 3072-3077 (2007)
    [4] N.G. Shang, F.C.K. Au, X.M. Meng, C.S. Lee, I. Bello, S.T. Lee “ Uniform carbon nanoflake films and their field emission” Chemical Physics Letters 358 187-191 (2002)
    [5] Yihong Wu, Bingjun Yang, Baoyu Zong, Han Sun, Zexiang Shen, Yuanping Feng “Carbon nanowalls and related materials” Mater. Chem. 14 469 (2004)
    [6] K. Nishimura, N. Jiang, A. Hiraki “Growth and Characterization of carbon nanowalls” IEICE Trans. Electron. E86-C 821 (2003)
    [7] K. Tanaka, M. Yoshimura, A. Okamoto, K. Ueda “Growth of carbon nanowalls on SiO2 substrate by microwave plasma enhanced chemical vapor deposition” Japanese Journal of Applied Physics Vol. 44, No. 4A, pp. 2074-2076 (2005)
    [8] Alfred T.H. Chuang, Bojan O. Boskovic, John Robertson “Freedstanding carbon nanowalls by microwave plasma enhanced chemical vapor deposition“ Diamond and Related Materials 15 1103-1106 (2006)
    [9] Alfred T.H. Chuang, Bojan O. Boskovic, John Robertson, Krzysztof K.K. Koziol “Three-dimensional carbon nanowall structures” APPLIED PHYSICS LETTERS 90, 123107 (2007)
    [10] T. Itoh, S. Shimabukuro, S. Kawamura, S. Nonomura “Preparation and electron field emission of carbon nanowall by Cat-CVD” Thin Solid Film 501 314-317 (2006)
    [11] Th. Dikonimous, L. Giorgi, R. Giorgi, N. Lisi, E. Salernitano, R. Rossi “DC plasma enhanced growth of oriented carbon nanowall films by HFCVD” Diamond and Related Materials 16 1240-1243 (2007)
    [12] S. Shimabukuro, Y. Hatakeyama, M. Takeuchi, T. Itoh, S. Nonomura “Effect of hydrogen dilution in preparation of carbon nanowall by hot-wire CVD” Thin Solid Film 516 710-713 (2008)
    [13] S. Shimabukuro, Y. Hatakeyama, M. Takeuchi, T. Itoh, S. Nonomura “Preparation of carbon nanowall by hot-wire chemical vapor deposition and effects of substrate heating temperature and filament temperature” Japanese Journal of Applied Physics Vol. 47, No. 11, pp. 8653-8640 (2008)
    [14] K. Kobayashi, M. Tanimura, H. Nakai, A. Yoshimura, H. Yoshimura, K. Kojima, M. Tachibara “Nanographite domains in carbon nanowalls” JOURNAL OF APPLED PHYSICS PHYSICS 101, 094306 (2007)
    [15] Y. Chen, S. Patel, Y. Ye, David T. Shaw Liping Guo “Field emission from aligned high-density graphitic nanofiners” Appl. Phys. Lett. 73, 2119 (1998)
    [16] http://www.michaelburns.net/FELamp.html
    [17] A.N. Obraztsiv, A.P. Volkov, Al.A. Zakhidov, D.A. Lyashenko, Yu.V. Petrushenko, O.P. Satanovskaya “Field emission characteristics of nanostructured thin film carbon materials” Applied Surface Science 215 214-221 (2003)
    [18] A.S. Leychenko, M.Yu. Leshukov, N.N. Chandaev, E.P. Sheshin “Effective lamp for LCD-Backlightning with the field emission cathode” 2006 IEEE
    [19] 光電平面面板顯示器基本概論 顧鴻壽、周本達 著
    [20] Jong Min Kim, Won Bong Choi, Nae Sung Lee, Jae Eun Jung, “Field emission from carbon nanotubes for displays” Diamond and Related Materials 9 1184–1189 (2000)
    [21] 半導體製程技術導論 原著 Hong Xiao 譯者 張鼎張、羅正忠
    [22] 薄膜技術與薄膜材料 田民波 著
    [23] 奈米檢測技術 國家實驗研究院儀器科技研究中心 出版
    [24] http://140.116.176.21/www/technique/instrument/JSM6700.htm
    [25] S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana P. Molina-Morales and H. Nakai “Raman spectra of carbon nanowalls grown by plasma-enhannced chemical vapor deposition” Journal of applied physics 97, 104320 (2005)
    [26] Paul W. May “CVD Diamond – a new technology for the future?” http://www.chm.bris.ac.uk/pt/diamond/end.htm
    [27] Paul W. May “Diamond thin film: a 21st –century material” Phil. Trans. R. Soc. Lond. A 358, 473-495 (2000)
    [28] Rajendra S. Khairnar, C.V. Dharmadhikari, and Dilip S. Joag “Pencil lead tips: A field emission microscopic study,” J. Appl. Phys. 65 (12), 15 June (1989)

    下載圖示 校內:2010-08-05公開
    校外:2010-08-05公開
    QR CODE