簡易檢索 / 詳目顯示

研究生: 高崇仁
Kao, Chung-Jen
論文名稱: 同步設計策略於液壓金屬屑壓塊機改善與輸送機配置之研究
Synchronous design strategy in the study of hydraulic metal chip briquetting machine improvement and conveyor configuration
指導教授: 蕭世文
Hsiao, Shih-Wen
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系碩士在職專班
Department of Industrial Design (on-the-job training program)
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 90
中文關鍵詞: 液壓金屬屑壓塊機輸送機同步設計AHP層級程序分析Pugh概念篩選矩陣
外文關鍵詞: hydraulic metal chip briquetting machine , conveyor, synchronous design, AHP level program analysis, Pugh concept screening matrix
相關次數: 點閱:80下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文為研究液壓金屬屑壓塊機改善及輸送機配置開發設計之流程,採同步工程方法的步驟,來減少研發時間,並同時了解市場上的需求及現有產品的問題,並進一步提升產品的品質,提升市場的滿意度。
    採明箱化同步設計來規劃四項預定步驟,第一項商品企劃與市場分析:收集市場上液壓金屬屑壓塊機及輸送機優缺點並進行歸類及相互比較,做出意象尺度量表(Image scale analysis) 及市場上產品的定位處。第二項訂定設計規範:確定目標市場,採用目標樹決策(Objective tree)訂定商品設計規範,並確定產品設計方針。第三項設計構想的發散及收斂:採限量性結構法(Finite structure method)和形態學圖表法(Morphological analysis) 闡述產品外型及相關機構配置設計,並進行產品細部設計,達設計最佳化。第四項產出最佳設計概念:採AHP作權重分析後再採Pugh概念篩選矩陣進行概念篩選,選出最佳設計方案後,進行產品配置及2D工程圖製作。
    採用最佳的設計方案後,並進行3D產品建構,為證明本研究之方法可行性,將與市面上相關產品做比較,請相關人員評比,以確認本研究的有效性。
    關鍵字:液壓金屬屑壓塊機,輸送機,同步設計,AHP層級程序分析, Pugh概念篩選矩陣。

    This article is to study the process of hydraulic metal chip briquetting machine improvement and conveyor configuration development and design. The steps of synchronous engineering method are adopted to reduce research and development time, and at the same time understand the needs of the market and the problems of existing products, and further improve the quality of products, Improve market satisfaction.
    The four pre-determined steps are planned by using the box-based synchronous design. The first product planning and market analysis: collect the advantages and disadvantages of hydraulic metal chip briquetting machines and conveyors on the market, classify and compare them with each other, and make an Image scale analysis and product positioning on the market. The second is to set design specifications: determine the target market, use the target tree decision to set product design specifications, and determine the product design plan. The divergence and convergence of the third design concept: using Finite structure method and Morphological analysis to explain the product appearance and related organization configuration design and carry out product detail design to achieve design optimization. The fourth output is the best design concept: AHP is used for weight analysis and then the Pugh concept screening matrix is used for concept screening. After the best design plan is selected, product configuration and 2D engineering drawing production are carried out.
    After adopting the best design plan, and constructing 3D products, in order to prove the feasibility of the method of this research, we will compare it with related products on the market and ask relevant personnel to compare it to confirm the validity of this research.
    Key words: hydraulic metal chip briquetting machine ˴ conveyor ˴ synchronous design ˴ AHP level program analysis ˴ Pugh concept screening matrix.

    摘要 i 英文延伸摘要 ii 誌謝 vii 目錄 viii 表目錄 xi 圖目錄 xiii 第1章 緒論 1 1.1 研究背景和動機 1 1.2 研究目的 3 1.3 研究架構 4 1.4 論文架構 5 1.5 研究範圍與限制 7 第2章 文獻探討 8 2.1液壓金屬屑壓塊機與輸送機基本構成 8 2.1.1 液壓金屬屑壓塊機與輸送機定義 9 2.1.2立式液壓金屬屑壓塊機 9 2.1.3 立式液壓金屬屑壓塊機種類 11 2.1.4臥式液壓金屬屑壓塊機 12 2.1.5臥式液壓金屬屑壓塊機種類 13 2.1.6液壓金屬屑壓塊機基本架構 14 2.1.7皮帶式輸送機 15 2.1.8鍊式輸送機 16 2.2液壓金屬屑壓塊機安全規範之探討 17 2.2.1液壓金屬屑壓塊機作動安全規定 17 2.2.2液壓金屬屑壓塊機重要元件設計須求 18 2.2.3液壓金屬屑壓塊機3D模擬分析 19 第3章 理論基礎 23 3.1研究流程與架構 23 3.2研究方法 24 3.2.1目標樹決策(Objectives tree) 24 3.2.2層級程序分析法(Analytic Hierarchical Process,AHP) 26 3.2.3限量性結構法(Finite Structure methord) 29 3.2.4形態學圖表法(Morphological Analysis) 30 3.2.5決策矩陣法(Decision-matrix methord) 31 第4章 研究流程與執行程序 33 4.1液壓金屬屑壓塊機輸送機產品企劃分析 33 4.2產品設計規範 34 4.2.1執行程序 34 4.2.2 產品意象尺度表 35 4.2.3 目標樹建立 37 4.3產品設計發散與收斂 38 4.3.1執行程序 384.3.2 解析單元構件 39 4.3.3 限量性結構法分析(FSM) 39 4.3.4 形態學圖表建構 41 4.3.5 草圖建構 42 4.4產出最適設計概念 48 4.4.1執行程序 48 4.4.2 AHP評估規範 49 4.4.3 Pugh概念篩選矩陣 57 4.5產出設計工程圖檔 59 4.5.1 輸送機3D建模 59 4.5.2 輸送機2D組立圖 60 4.5.3 輸送機零件表 61 4.5.4 輸送機2D工程圖面 62 第5章 研究流程與執行程序 64 5.1 臥式液壓金屬壓屑機問題改善分析 64 5.2 臥式液壓金屬屑壓塊機問題收集 66 5.2.1執行程序 66 5.2.2 臥式液壓金屬屑壓塊機問題蒐集 67 5.2.3 臥式液壓金屬屑壓塊機問題確認 67 5.3問題改善設計發散與收斂 70 5.3.1執行程序 70 5.3.2 臥式液壓金屬屑壓塊機問題改善設計發想草圖 71 5.4產出最適設計概念 74 5.4.1執行程序 74 5.4.2 Pugh各評估參數與權重 75 5.5產出改善方案工程圖檔 77 第6章 實例驗證與分析 82 6.1實例驗證 82 6.2實例分析 84 第7章 結論與建議 86 參考文獻 88

    王正青 (2020) 。2019全球工具機主要出口國家市場報導。台灣機械同業公會機械資訊期刊, 758,50-58。
    王派中 (2001) 。插銷離合器沖床的本質安全化設計.高雄第一科技大學環境與安全衛生工程系碩士學位論文。
    皮梁、陳愛華 (2020) 。一種自動化履帶傳送機及其計數器的設計實現.工業技術,3,83-84。
    李尹婷 (2009) 。建立「產品操作可見性」之線上評價模式.成功大學工業設計學系碩士論文。
    李朋軍、陳國林、趙建軍 (2011) 。皮帶輸送機的常見故障與處理 。北方釩鈦,2,9-10。
    周海波 (2017) 。鍊式輸送機技術研究和改進。冶金設備 ,236,113-125。
    施宏霖 (2002) 。探討形態學圖表法提案組合之程序。成功大學工業設計學系碩士論文。
    紀曉菁 (2013) 。運用失效模式分析與同步工程策略於輔具研發設計。成功大學工業設計學系在職專班碩士學位論文。
    蕭世文、范成偉 (1996) 。整合FSM、STM及DFA法於水龍頭上的設計應用研究。中國工業工程學刊,13(3),225-235。
    劉薇娜、謝榮譽、張越、王尹琛 (2017) 。液壓金屬屑壓塊機的完善與補充研究。新型工業化開放式獲取期刊, 6,39-44。
    謝榮譽 (2018) 。工業鐵屑壓塊機的設計與研究。長春理工大學碩士學位論文。
    楊軍軍、武建新 (2015) 。生產線傳送帶及立體倉庫控制系統設計。機械研究與應用,4,225-227。
    楊伯軍、高雨、溫迎強、趙凡、種慶洋 (2020) 。基於思維流程的創新設計方案評價方法研究。現代製造工程工程,8,39-46。
    Arinez, J. F., Chang, Q., Gao, R. X., Xu, C., and Zhang, J. 9(2020). Artificial Intelligence in Advanced Manufacturing: Current Status and Future Outlook. ASME. J. Manuf. Sci. Eng; 142(11): 110804 (1 - 6). https://doi.org/10.1115/1.4047855
    Chawla, A., and Summers, J. D. (2019). How Function Ordering Within
    Morphological Charts Influence Exploration. ASME. J. Mech. Des. 141(9): 094502 (1 -7). https://doi.org/10.1115/1.4043929
    Du , R., and Guo, W. Z. (2003) .The Design of a New Metal Forming Press with Controllable Mechanism . ASME. J. Mech. Des. 125(3): (582–592). https://doi.org/10.1115/1.1587748
    Jiang, Z., Wang, H., Dulebenets, M. A., and Pasha, J. (2019). Assembly System Configuration Design for Reconfigurability Under Uncertain Production Evolution. ASME. J. Manuf. Sci. Eng. 141(7): 071001(1-12).
    https://doi.org/10.1115/1.4043581
    Kalyanasundaram, V., and Lewis, K. (2014). A Function Based Approach for Product Integration. ASME. J. Mech. Des. 136(4):041002(1-15). https://doi.org/10.1115/1.4026032
    S Zhu, M., Liu, X., Kan, F., and You, Z. (2020). Life Cycle Prediction and Evaluation of Clutch Friction Plate Considering Wear Models and Thermal Stress. ASME. J. Tribol. 143(4): 041701(1-9). https://doi.org/10.1115/1.4048383
    Schmid, S. R., Saha, P. K., Wang, J., and Schmitz, T. (2020). Developments in Tribology of Manufacturing Processes. ASME. J. Manuf. Sci. Eng. 142(11): 110803(1-11). https://doi.org/10.1115/1.4047723
    Wentz, J. E., Kapoor, S. G., DeVor, R. E., and Rajagopalan, N. (2007). Development of a Novel Metalworking Fluid Engineered for Use With Microfiltration Recycling. ASME. J. Tribol.129(1): (135-142). https://doi.org/10.1115/1.2401207
    Zheng, X., Ritter, S. C., and Miller, S. R. (2018). How Concept Selection Tools Impact the Development of Creative Ideas in Engineering Design Education. ASME. J. Mech. Des. 140 (5): 052002(1-11).http://doi.org/10.1115/1.4039338sdf.
    Zwicky, F. (1967). The morphological approach to discovery,invention, research and construction New methords of thought and procedure (237-297):Springer

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE