簡易檢索 / 詳目顯示

研究生: 王偉政
Wang, Wei-Cheng
論文名稱: 太陽能熱水器之升力與阻力數值模擬分析研究
Numerical Simulation on Lift and Drag Forces of Solar Water Heater
指導教授: 張克勤
Chang, Keh-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 70
中文關鍵詞: 太陽能熱水系統導流板升力阻力
外文關鍵詞: Solar water heater, guide plate, lift force, drag force
相關次數: 點閱:109下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前政府推動再生能源,其中以太陽能熱水器的使用最為普遍,但由於台灣的地理位置,因常會發生颱風的自然災害,造成太陽能熱水器設備上的損害。而要有效降低太陽能熱水器之損害,除了加強太陽能熱水器結構強度之外,有效降低太陽能熱水器之升力與阻力是本研究之目標。
    本研究使用Fluent 6.3.26商用軟體模擬太陽能板之 升、阻力,利用不同的紊流模式模擬找出與實驗值最接近的適合模擬為Standard k-ε模式,接著以Standard k-εmodel為基準,模擬60%模型不同的傾斜角與40%模型加裝不同的導流板之流場;但用60%模型在傾斜角為15度時,風洞內所占的阻塞比為8.35%,為了瞭解阻塞比但測試結果之影響,另模擬40%模型且傾斜角15度之案例,而40%模型所占的阻塞比為3.71%。
    模擬結果指出,集熱板傾斜角越大,集熱板前端所受的壓力差越大。在集熱板加裝導流板時,可有效遮蔽氣流,避免氣流直接衝擊下板面,有效的降低集熱板前端的壓差,而導流板的截面積越大時,集熱板所受的升力隨之降低,但阻力隨之升高。

    The government promotes the renewable energy resource recently to ease the tense situation of energy crisis. Among the available technologies of renewable energy, solar water heater is the most popular one in Taiwan. However, typhoons visit Taiwan several times a year and it may destroy the solar water heater. One of solution in regard to avoid the damage effectively is to reduce the lift force and drag force of the solar panel; and this is the major goal of this study.
    The lift and drag forces of the solar water heater are simulated by a commercial software “Fluent 6.3.26” in this study. Several simulations with different turbulence models are completed to find out the model that provides the predictions fitting best with the experiment at results. Based on the fittest model, Standard k-εmodel, simulations of 60% scaled down solar water collector model with different tilt angles and 40% scaled down model with different guide plates are done in this study to investigate the effects of the tilt angle and guide plate. The blockage ratio of the wind tunnel for the 60% scaled down model with 15 degree tilt angle is 8.35% which for the 40% scaled down model with 15 degree tilt angle is 3.71%. The results of simulations prove that the larger tilt angle of the solar collector cause the larger pressure differences in the leading edge. Installation of the guide plate protects the solar collector by avoiding the flow directly hit the bottom surface of the solar collector; therefore it can efficiently reduce the leading edge pressure differences. Nevertheless, as the cross-sectional area of the guide plate increases, the lift force acted on solar collector decreases but the drag force would be increased.

    摘要 I ABSTRACT III 目錄 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.2.1太陽能熱水器文獻回顧 2 1.2.2 RANS 方程式 5 1.2.3 DNS方程式 5 1.2.4 Boussinesq 假說 5 1.2.5 零方程式模式 6 1.2.6 單方程式模式 6 1.2.7 雙方程式模式 7 1.3 研究動機 8 第二章 物理問題與數學模式 9 2.1物理問題簡介 9 2.1.1 基本假設 10 2.2數學模式 10 2.2.1 standard k-ε model 11 2.2.2 Realizable k-ε model 12 2.2.3 Spalart-allmaras Model 14 2.2.4 Enhanced Wall Functions 16 第三章 數值方法 18 3.1 數值法 18 3.2計算區域及邊界條件 18 3.2.1 邊界條件設置 18 3.3 網格系統和格點測試 20 3.3.1 網格系統建構 20 3.3.2 格點測試 21 第四章 結果與討論 22 4.1 使用不同TURBULENCE MODELS 比較 22 4.1.1三種不同turbulence models比較 22 4.1.2 模擬傾斜角15。模型60%無加裝導流板(G0)與實驗值比較 23 4.2 模型為60%之流場現象探討 24 4.2.1 模型周圍之流線變化 24 4.2.2 模型表面之數值油流分佈 24 4.2.3 改變傾斜角效應 25 4.3 模型為40%之流場現象探討 26 4.3.1 模型周圍之流線變化 26 4.3.2 模型表面之數值油流分佈 27 4.3.3 壓力分佈之分析 27 4.4 升、阻力分析 29 4.4.1 60%與40%模型之升、阻力比較 29 第五章 結論與未來工作 31 5.1結論 31 5.2未來工作 32 參考文獻 33

    [1] A.N. Khalifa, Forced Versus Natural Circulation Solar Water Heaters: A Comparative Performance Study, Renewable Energy, 14(1), pp.77-82 (1998)
    [2] 李清安、張克勤、李聰盛、鐘光民,“颱風對國內太陽能熱水系統之損壞探討”工程,vol.80,NO.5,pp.134-142.(2007)
    [3] 陳俊谷,“降低太陽能熱水風損之實驗研究”,國立成功大學 航空太空研究所碩士論文, 2006.
    [4] 修治平,“導流板對不同角度集熱板之空氣動力特性研究”,國立成功大學航空太空研究所碩士論文, 2007.
    [5] 周晉成,“儲水桶對太陽能板空氣動力效應分析”,國立成功大學航空太空研究所碩士論文, 2009
    [6] C.J. Chen, S.Y. Jaw. Fundamentals of Turbulence Modeling. Taylor&Francis, Washington, 1998
    [7] Fluent Inc., FLUENT User’s Guide. Fluent Inc., 2003
    [8] B.E. Launder, D.B. Spalding, “The numerical computation of turbulent flow,” Comput. Methods Appl. Mech. Eng. Vol. 3, pp. 269–289, 1974.
    [9] T.H. Shih, W.W. Liou, A. Shabbir, Z. G, Yang, J. Zhu, A new k-ε eddy viscosity model for high Reynolds number turbulence flows. Comput Fluids. 24(3):227-238,1995
    [10] P. Spalart and S. Allmaras. A one-equation turbulence model for aerodynamic flows. Technical Report AIAA-92-0439, American Institute of Aeronautics and Astronautics, 1992
    [11] B. Kader. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers. Int. J. Heat Mass Transfer, 24(9):1541-1544, 1981

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE