| 研究生: |
林冠宏 Lin, Guan-Hong |
|---|---|
| 論文名稱: |
多電極太陽光電模組受機械荷重之有限元素分析 Finite Element Analysis of Multielectrode Solar Photovoltaic Modules Subjected to Mechanical Loads |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 共同指導教授: |
林福銘
Lin, Fu-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 太陽光電模組 、多電極 、ABAQUS 、有限元素法 |
| 外文關鍵詞: | solar photovoltaic modules, multielectrode, ABAQUS, Finite element method |
| 相關次數: | 點閱:149 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著氣候變遷,全球暖化影響,加上石油燃料的枯竭,各國紛紛開始尋找新的替代能源,像是水力發電,風力發電,生質能發電以及太陽能發電等等。太陽能發電有許多優點,操作簡易不需人手,耐久性強,良好的保養可維持四十年以上的發電。由於太陽光電模組為了能照射陽光,因此需長期架設於室外,在高緯度國家,太陽光電模組常因積雪過重而導致鋁框支架挫曲變形,進而使整體太陽能模組內部高單價發電材料斷裂,而在台灣,過大的風壓也將造成鋁框變形。本研究以有限元素軟體ABAQUS建構太陽光電模組負載分析,根據規範IEC61215設置均壓2400Pa來分析太陽光電模組最大應力與變形。針對太陽光電模組中3BB全電池模組與4BB全電池模組,分別改變鋁框之支架位置,來評估最佳的設計方式。分析結果顯示,無論是3BB太陽光電模組或是4BB太陽光電模組於模組最大變形區域之Ribbon材料以達塑性階段,而使用局部加寬Ribbon材料斷面可有效降低Ribbon材料應力值約40%,使材料維持彈性階段。另一方面,對於太陽光電模組支撐架設方式,無論是採用雙根支架或是三根支架安裝方式,建議使用長框四分之一等份處架設支撐架,材料承受應力最小,整體模組變形量也較小。
Due to climate changing, impact of global warming and the depletion of fuels of petroleum, people around the world are starting to look for alternative sources of energy, such as hydropower, wind power, biomass energy and solar power. Solar power has many advantages: simple operation, strong durability. Well-maintenance can use for more than forty years of power generation. In order to be able to irradiate the sun, solar photovoltaic modules need to be set up long-term outdoors. The high-priced single-generation materials of solar photovoltaic modules fracture because solar photovoltaic modules are often subject to excessive snow at high latitudes and lead to buckling deformation of aluminum frames of solar photovoltaic modules. In Taiwan, too much wind pressure will also cause deformation of the aluminum frame of solar photovoltaic modules. In this study, it is show that are solar photovoltaic modules are established by using ABAQUS. According to the standard IEC61215, the force condition is the uniform pressure 2400Pa on the panel. The optimal design method is evaluated by changing the position of the aluminum frame of both 3BB solar photovoltaic module and 4BB solar photovoltaic module. The results of the numerical analysis show that the stress of ribbons of both 3BB solar photovoltaic module and 4BB solar photovoltaic module in the module of the largest deformation area is in the plastic stage. Localized wide section of ribbons can effectively reduce the material stress value of 40%. On the other hand, it is recommended to use a quarter of a long box to set up a support frame of solar photovoltaic modules because the material of solar photovoltaic modules to withstand the minimum stress and the deformation of solar photovoltaic modules is also smaller.
[1] International Electrotechnical Commission. (2005). Crystalline silicon terrestrial photovoltaic (PV) modules—design qualification and type approval. International Standard IEC, 61215(04).
[2] Köntges, M. (2014), et al. ,Review of failures of photovoltaic modules, IEA PVPS Task 13.
[3] Lee, Y., & Tay, A. A. (2012). Finite element thermal analysis of a solar photovoltaic module. Energy Procedia, 15, 413-420.
[4] Ramezani, M., & Ripin, Z. M. (2010). Combined experimental and numerical analysis of bulge test at high strain rates using split Hopkinson pressure bar apparatus. Journal of Materials Processing Technology, 210(8), 1061-1069.
[5] Sander, M., Dietrich, S., Pander, M., Ebert, M., & Bagdahn, J. (2013). Systematic investigation of cracks in encapsulated solar cells after mechanical loading. Solar Energy Materials and Solar Cells, 111, 82-89.
[6] TamizhMani, G. (2010). Testing the reliability and safety of photovoltaic modules: failure rates and temperature effects. TÜV Rheinland PTL & Arizona State University, Tempe, Arizona, USA.
[7] Wirth, H., Weiß, K. A., & Wiesmeier, C. (2016). Photovoltaic Modules: Technology and Reliability. Walter de Gruyter GmbH & Co KG.
[8] 李清安, 張克勤, 李聰盛, 鍾光民. (2005). 颱風對太陽能熱水系統裝置損壞調查剖析: 海棠颱風案例.
[9] 沈輝, & 曾祖勤. (2008). 太陽能光電技術. 台北: 五南.
[10] 陳玠佑(2016),單片太陽能板支架結構風力分析研究,內政部建築研究所。
[11] 許晃雄. (1998). 人為的全球暖化與氣候變遷. In The 4th International Conference of Atmospheric Action Network East Asia, Taiepi (Vol. 9, pp. 26-27).。
[12] 許育銘. (2013). 風力負載下太陽能板之結構分析與改善. 成功大學航空太空工程學系學位論文。
[13] 賈維桓. (2012). 矽晶太陽光電模組機械荷重之數值分析. 成功大學土木工程學系學位論文.
[14] 劉政佑. (2013). 太陽光電模組受機械荷重之有限元素輕量化分析. 成功大學土木工程學系學位論文.
[15] 齊藤勝裕.(2012). 3小時讀通太陽能電池,新北市:世茂出版有限公司.
[16] 鄭元良、陳若華、李信宏、范智光、郭建源、聶國昀、周晉成、王家驊. (2015) 陽光屋頂耐風評估與設計準則. 內政部建築研究所.
[17] 蕭為元. (2010). 抗反射膜在顯示技術與太陽能吸收之研究PhD Thesis. National Central University.
[18] Ken, Power to the People: How to Build a Plug and Play Grid Tie Solar Array, Available:
https://ken-nect.blogspot.tw/2011/12/power-to-people-how-to-build-plug-and.html?m=0 [October 11,2016].
[19] Ningbo Komaes Solar Technology Co., Ltd, (5-120W 156 Series Polycrystalline Solar Module),Available:
http://komaes-solar.company.weiku.com/item/5-120W-156-Series-Polycrystalline-Solar-Module-15521355.html [October 11,2016].
[20] 山東巨皇光電科技有限公司-臨沂巨皇新能源科技發展有限公司. Available: http://www.solar-powertek.com/news_list.asp?classid=79&id=620 [October 21,2016].
[21] 台灣電力公司 Available:
http://www.taipower.com.tw/content/new_info/new_info01.aspx
[October 30,2016].
[22] 交通部中央氣象局 Available:
http://www.cwb.gov.tw/V7/index.htm [August 30,2016].
[23] 茂迪股份有限公司,Available:
http://www.motech.com.tw/tw/cells.php [August 30,2016].
[24] 嘉貿光電股份有限公司,Available:
http://www.solarjoin.com/productDetail/1 [August 30,2016].
[25] 經濟部能源局太陽光電資訊網. Available:
http://www.moeaboe.gov.tw [October 21,2016]
[26] 聚恆科技有限公司. Available:
http://www.hengs.com/index.html [October 21,2016]
校內:2022-07-13公開