簡易檢索 / 詳目顯示

研究生: 沈維信
Shen, Wei-hsin
論文名稱: 奈米壓痕實驗應用於高分子材料黏彈性質量測
Nanoindentation applied to Measurement of Viscoelastic Properties of Polymer Material
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 73
中文關鍵詞: 高分子奈米壓痕黏彈
外文關鍵詞: Nanoindentation, Polymer, Viscoelastic
相關次數: 點閱:87下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文的主題為研究高分子材料在進行奈米壓痕試驗時所表現
    出來的時依(Time-dependent)行為。透過以二次Kekvin模型為基礎,加上實驗所觀察到各負載條件下,壓深對時間的關係來建立模型,且透過模型中壓深理論解,可把每一段負載條件下的壓深對時間關係清楚表示出來。當各元件的參數給予正確時,本模型可將實驗結果擬合的相當接近。
    在高分子材料中,PMMA與PU分別代表彈性恢復量(Elastic
    recovery)較小與較大的材料,透過本研究所建立之模型,可將此兩種高分子材料在壓痕試驗中的潛變(Creep)變形與相位落後(Phase lag)的行為清楚地描述出來。在定負載下,可觀察到試件的潛變變形,為反應前段負載條件的遲滯行為;與黏彈性質所造成材料壓深與時間呈線性關係的行為。在震盪加載之下,壓深與負載會有相位落後的情形,在透過不同的震盪條件下,可發現相位落後與震盪頻率成一線性正比關係。
    在利用原子力顯微鏡(Atomic force microscope, AFM)掃描壓痕實驗後試件的殘餘形貌(Residual profile),可應證高分子材料為幾何密合(Accommodation)的可靠假設。且針對本模型提出一個估算機械性質的方法,可不必透過面積函數(Area function)便可得到楊氏模數(Young’s modulus)與硬度(Hardness)。並且針對高分子這類黏彈性質較大的材料,在停滯段部份所發生無法定負載與負載衰退的行為進行討論。

      The topical subject in this study is to investigate the polymer’s time-dependent behaviors. Through the arrangements of the applied load for nanoindentation tests, the experimental results of polymers varying with time arising in the loading, unloading, dwelling, and oscillating load processes are obtained. These indentation responses offer the help to establish the mechanical model for the load-depth behavior in polymers. Based on this model, the depth solutions are solved for these applied load conditions. The PMMA and PU materials are adopted as the typical examples with a low and a high recovery respectively in polymers. The experimental results of these two materials are fitted well if the coefficients used in this model are properly given. The phase lag exhibited between the responding depth and the oscillating load is investigated to be linear proportional to frequency. The residual cavity profile of the PMMA scanned by an atomic force microscope gives the validity of accommodation assumption. The effect of the overshooting occurring in the dwelling process is also discussed.

    中文摘要 I 英文摘要 III 誌謝 IV 章節目錄 V 表目錄 VI 圖目錄 VII 符號表 IX 第一章 緒論 1 1.1前言 1 1.2文獻回顧 3 1.2.1壓痕試驗應用於檢測機械性質 3 1.2.2奈米壓痕試驗之彈性模數裡論 4 1.2.3利用尖型壓頭分析黏彈塑性材料的負載壓深行為 6 1.2.4高分子材料的潛變行為 7 1.3研究目的與內容 8 第二章 理論分析 13 2.1二次Kelvin模型的推導與負載下的壓深解 13 2.1.1修正的Kelvin模型 13 2.1.2 Kelvin模型的壓深解 15 2.1.3等速率加載下Kelvin模型的壓深解 16 2.1.4震盪加載下Kelvin模型的壓深解 17 2.2材料的不可恢復變形模型理論 19 2.3材料的可恢復變形模型理論 22 2.4模型的組成與負載條件下的壓深解 24 2.4.1黏性部份的壓深解 24 2.4.2動態負載下模型的總壓深解 25 第三章 實驗規劃 36 3.1實驗設備 36 3.1.1壓痕實驗的機台簡介 36 3.1.2力位移轉換器的設計 36 3.1.3儀器作動原理 37 3.1.4壓頭的規格 37 3.2實驗內容 38 3.2.1實驗的步驟 38 3.2.2負載條件的設定 39 3.3實驗分析 40 3.3.1材料的潛變行為 40 3.3.2震盪部份的結果 40 第四章 結果與討論 46 4.1負載部份的行為分析 46 4.2震盪部份的行為分析 49 4.3壓頭與壓深的幾何分析 52 4.4機械性質的估算 54 4.5停滯段部份的問題分析 57 第五章 結論與未來研究方向 67 5.1結論 67 5.2建議與未來研究方向 69 參考文獻 70 自述 73

    [1]Oyen, M. L.; Cook, R. F.;2003, “Load-displacement
    behavior during sharp indentation of viscous-elastic-
    plastic materials”, J. Mater. Res.; 18(1), 139-150
    [2]Zhang, Y. W.; Yang, S.;2004, “Analysis of
    nanoindentation creep for polymeric materials”, J.
    Applied. Physics.; 95(7), 3655-3666.
    [3]Zhang, C. Y.; Zhang, Y. W.; Zeng, K. Y.; Shen, L.;2005,
    “Nanoindentation of polymers with a sharp indenter” J.
    Material Research; 20(6), 1597-1605.
    [4]Ngan, A.H.W.; Tang, B.; 2002, “Viscoelastic effects
    during unloading in depth- sensing indentation,” J.
    Material Research; 17(10), 2604-2610.
    [5]Geng, K.; Yang, F.; Druffel, T.; Grulke E. A.; 2005,
    “Nanoindentation behavior of ultra-thin polymeric
    films,” Polymer; 46, 11768-11772.
    [6]Shen, L,; Phang, I. Y.; Liu, T. X.; Zeng, K. Y.; 2004,
    “Nanoindentation and morphological studies on nylon
    66/organoclay nanocomposites. I. Effect of clay
    loading,” Polymer; 45, 3341-3349.
    [7]Shen, L,; Phang, I. Y.; Liu, T. X.; Zeng, K. Y.; 2004,
    “Nanoindentation and morphological studies on nylon
    66/organoclay nanocomposites. II. Effect of strain
    rate,” Polymer; 45, 8221-8229.
    [8]Oliver, W. C.; Pharr, G. M.; 1992, “An improved
    technique for determining hardness and elastic modulus
    using load and displacement sensing indentation
    experiments”, Journal of Material Research; 7(4), 1564-
    1583.
    [9]Suresh, S.; Giannakopoulos, A. E.; 1999,
    “Determination of Elastoplastic Properties by Sharp
    Indentation”, Scripta Materialia; 40(10), 1191-1198.
    [10]Nayebi, A.; Abdi, R. El; Bartier, O.; Mauvoisin, G.;
    2002, “New procedure to determine steel mechanical
    parameters from the spherical indentation technique”;
    Mechanics of Materials; 34, 243-254.
    [11]Jayaraman, S.; Hahn, G. T.; Oliver, W. C.; Rubin, C.
    A.; Bastias, P. C.; 1998, “Determination of Monotonic
    Stress-Strain Curve of Hard Materials from Ultra-Low-
    Load Indentation Tests”, Int. J. Solids Structures; 35
    (5), 365-381.
    [12]Taljat, B.; Zacharia, T.; Kosel, F.; 1998, “New
    Analytical Procedure to Determine StressStrain Curve
    from Spherical Indentation Data”, International
    Journal of Solids Structures; 35(33), 4411-4426.
    [13]陳冠維,“掃描式探針顯微鏡摩擦力檢測應用於不繡鋼氮離子
    植佈技術之建立及材料微/奈米機械性質檢測”,國立成功大學
    機械工程學系碩博士班,碩士論文,(2003)。
    [14]Sneddon, I. N.; 1965, “The relation between load and
    penetration in the axisymmetric Boussinesq problem for
    a punch of arbitrary profile”, Int. J. Engng Sci.; 3,
    47-57.
    [15]King, R. B.; 1987, “Elastic Analysis of Some Punch
    Problems for A layered Medium,” Int. J. Solids
    Structure; 23(12), 1657-1664.
    [16]Hainsworth, S. V.; Chandler, H. W.; Page, T. F.; 1996,
    “Analysis of nano -indentation load-displacement
    loading curves”, J. Mat. Res.; 11(8), 1987-1995.
    [17]Page, T. F.; Pharr, G. M.; Hay, J. C.; Oliver, W. C.;
    Lucas, B. N.; Herbert, E.; Riester, L.; 1998,
    “Nanoindentation Characterization of Coated Systems:
    P/S2 - A New Approach Using the Continuous Stiffness
    Technique”, MRS Symp. Proc.; 522, 53-64.
    [18]Ben Beake; 2006, “Modeling indentation creep of
    polymers: a phenomenological approach”, J. Phys. D.;
    39,4478-4485.
    [19]Tabor, D.; 1951, Hardness of Metals, 3rd ed. Oxford
    University Press, Amen House, London.
    [20]Sakai, M.; 1999, “The Meyer Hardness, A Measure for
    Plasticity?”, J. Mater. Res.; 14(9), 3630-3639.
    [21]TriboScope User Manual
    [22]Fischer-Cripps, A.C.; 2002, Nanoindentation, Springer.
    [23]美國Hysitron公司網頁,http://www.hysitron.com/。
    [24]魏伯任,“奈米壓痕實驗應用於塊材、覆膜材料機械性質以及
    硬脆材料黏彈性質量測─理論分析與實驗印證”, 國立成功大
    學機械工程學系碩博士班,博士論文,(2005)。
    [25]英國Goodfellow公司網頁,http://www.goodfellow.com/。
    [26]G. Hochstetter, A. Jimenez, J. P. Cano, E. Felder.;
    2003, “An attempt to determine the true stress-strain
    curves of amprphous polymers by nanoindentation”,
    Tribology International.; 36, 973-985.

    下載圖示 校內:2008-08-01公開
    校外:2008-08-01公開
    QR CODE