簡易檢索 / 詳目顯示

研究生: 林育瑋
Lin, Yu-Wei
論文名稱: 錫銀/錫銀銅銲錫與鎳基材在迴焊初始階段之界面反應行為
The Behaviors of the Sn-Ag/Ni and Sn-Ag-Cu/Ni Interfacial Reactions during the Early Stage of Reflow
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 122
中文關鍵詞: 界面反應非晶質擴散區奈米晶胞異質成核均質成核臨場即時觀察
外文關鍵詞: Interfacial reactions, Amorphous diffusion zone, Nano cell, Homogeneous nucleation, Heterogeneous nucleation, In-situ observations
相關次數: 點閱:93下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討錫銀以及錫銀銅無鉛銲錫合金與鎳基材在迴焊初期階段焊錫反應期間,液態銲錫與固態鎳界面反應行為,進一步瞭解界面介金屬化合物生成機制。
    錫銀與錫銀銅銲錫合金分別與電鍍鎳層在250 ℃下以短時間迴焊接合後,再利用液態氮將接合試片進行快速急冷,以保持銲錫與鎳基材液/固相反應時的狀態。錫銀銲錫與鎳基材在5秒鐘以及15秒鐘迴焊反應期間,Ni-Sn非晶質擴散區形成在銲錫與鎳基材之間界面,在這個非晶質擴散區內部並且形成奈米尺寸的介穩態NiSn介金屬化合物,此NiSn介金屬化物也會形成在接觸鎳層的界面上;錫銀銅銲錫與電鍍鎳層經由5秒鐘短時間迴焊反應後,在錫銀銅與鎳基材界面間會生成三元Ni-Sn-Cu非晶質擴散區,這層非晶質擴散區內部會形成NiSn與Cu6Sn5兩種介金屬奈米晶,本研究也觀察非晶質擴散區內部微結構組織,進一步探討介金屬化合物在凝核期間的結構演進。另外,在三元非晶質擴散區與鎳基材之間界面會形成NiSn凝核區,介穩態NiSn介金屬化合物生成在接觸鎳層界面上。
    因此,當液態錫銀與錫銀銅和固態鎳反應時,首先會在銲錫與鎳基材界面形成一層非晶質擴散區,擴散區內部會有介金屬奈米晶胞的生成,介金屬化合物也會形成在接觸鎳層界面上,介金屬化合物形成的機制可能同時藉由異質成核與均質成核的方式。當銲錫與鎳基材進行迴焊反應時,鎳晶格呈現之字形途徑溶解到液態銲錫中。
    另外,本研究也藉由TEM臨場即時觀察Ni-Sn非晶質擴散區在100℃加熱期間的結構變化。在加熱期間,非晶質中的奈米晶胞會成長,非晶質內部的基本結構也會因為原子的變動而造成基本結構形狀的改變,甚至瓦解,而基本結構中原子與原子之間的鍵結所形成的dangling bond,會造成原子鍵結發生彎曲、拉長的現象。

    This study focused on the behaviors of Sn-3.5Ag/Ni and Sn-3.0Ag-0.5Cu/Ni interfacial reactions during the early stage soldering process. The formation mechanism of the interfacial intermetallic compounds and the dissolution behavior of Ni substrate were further investigated in this study.
    Soldering of the Sn-Ag and Sn-Ag-Cu solders on the electroplated Ni were performed at 250℃ for the short reaction time. In order to reserve the status of the reaction between liquid solder and solid Ni, the soldered specimens were quenched rapidly by the liquid nitrogen. An amorphous Ni-Sn diffusion zone formed at the interface between solder and Ni in the periods of reflow for 5s and 15s. The formation of metastable NiSn with the nano size was observed within an amorphous diffusion zone as well as in contact with Ni layer. In addition, the ternary Ni-Sn-Cu amorphous diffusion zone formed at the interface between Sn-Ag-Cu solder and Ni layer after reflow for 5s. The formation of nanocrystalline NiSn and Cu6Sn5 intermetallic compounds was observed within the ternary amorphous diffusion zone. To analyze further the amorphous diffusion zone finds the possible evolution of intermetallic structure during nucleation. Metastable NiSn compound formed in contact with Ni layer and resulted in the formation of NiSn nucleation zone between an amorphous zone and Ni layer.
    When the liquid Sn-Ag and Sn-Ag-Cu solders reacted with solid Ni, an amorphous diffusion zone formed at the solder/Ni interface. Nanocrystalline intermetallic compounds formed not only in the amorphous diffusion zone but also in contact with the Ni layer. The formation of interfacial intermetallic compounds may take place through the homogeneous nucleation and heterogeneous nucleation. The Ni substrate dissolved into the molten solder during reflow. The formation of zigzag structure shows the dissolution behavior of Ni substrate.
    In addition, the behavior of Ni-Sn amorphous diffusion zone was investigated with in-situ TEM observations during heating at 100℃. The growth of the nano cell took place within an amorphous diffusion zone during heating. The atomic interactions resulted in the transition and disintegration of base structure. The formation of dangling bond induced the deformation of the bonding between the atoms in the base structure.

    中文摘要…………………………………………............................I 英文摘要…………………………………………...........................III 致謝...............................................V 總目錄…………………………………………............................VII 表目錄………………………………………….............................X 圖目錄…………………………………………............................XI 第壹章 簡介……………………………………...........................1 1-1無鉛銲錫合金與鎳基板之界面反應……………...................1 1-1-1液態銲錫與鎳基材之反應………………………....................1 1-1-2固態銲錫與鎳基材之反應………………………....................7 1-2錫銀銲錫與鎳基材之液-固界面反應.……....................10 1-2-1鎳-錫界面介金屬化合物…………………………....................10 1-3錫銀銅銲錫與鎳基材之液-固界面反應………………….............11 1-3-1銅的添加對錫與鎳界面反應的影響………………................13 1-4界面初期液/固反應之研究………………..…………………...............13 1-4-1錫銀銲錫與無電鍍鎳-磷基材之初期界面反應……...….........15 1-4-2錫與銅之初期界面反應行為............................18 1-4-3鋅與銅之初期界面反應行為……………………………..................22 1-5研究目的……………………………………………………….......................22 第貳章 實驗方法與步驟……………………………………………...................26 2-1實驗構想與設計……………………………………………….....................26 2-2焊錫接合試片之製備…………………………………………...................26 2-2-1銲錫合金之選擇………………………………………….....................26 2-2-2電鍍鎳基板之製備……………………………………….....................27 2-2-3接合反應後之冷卻方法…………………………………...................28 2-2-4迴焊接合條件…………………………………………… ......................28 2-3焊錫接合試片之分析………………………………………….....................32 2-3-1雙束型聚焦離子束(Dual-Beam Focused Ion Beam ; DB-FIB)..32 2-3-2穿透式電子顯微鏡(Transmission Electron Microscopy;TEM).32 2-3-2-1穿透式電子顯微鏡試片之製備…….…………...……................33 2-3-2-2繞射圖譜之相鑑定…………….……………………......................33 2-3-2-3反傅立葉轉換影像之分析…………….……………....................33 2-4TEM臨場即時觀察實驗.....................................33 第參章 結果與討論………………………………………………….......................35 3-1錫銀銲錫合金與鎳基材之迴焊初期階段界面反應……................…35 3-1-1錫銀銲錫與鎳基材迴焊初期生成之界面介金屬化合物…............35 3-1-1-1錫銀銲錫與鎳基材經由5秒鐘之迴焊接合反應.…...............35 3-1-1-2錫銀銲錫與鎳基材經由15秒鐘之迴焊接合反應................40 3-1-1-3迴焊初期階段界面介金屬化合物生成機制………................50 3-1-2迴焊初期階段對鎳金屬溶解行為之影響……………….................51 3-1-2-1迴焊初始階段之鎳金屬溶解行為……....…………................51 3-1-3結論………………………………………………………..........................59 3-2錫銀銅銲錫合金與鎳基材之初期階段界面反應……………...............59 3-2-1錫銀銅銲錫與鎳基材迴焊初期階段生成之界面介金屬化合物........59 3-2-2界面介金屬化合物生成機制……………………………....................71 3-2-3成核(Nucleation)…………………………………………...................79 3-2-4界面初期迴焊階段反應分析……………………………....................83 3-2-5不同反應系統之初期迴焊階段界面反應行為比較…...............84 3-2-6結論…………………..........………….………….....……..............88 3-3利用TEM臨場即時觀察NiSn奈米晶胞在熱處理期間之微結構變化.......89 3-3-1介金屬化合物之成長...................................89 3-3-2加熱期間非晶質內部結構之變化...........................96 3-3-3結論.............................................108 第肆章 結論………………………………………………………….....................109 參考文獻…………………………………………………………….......................111 表2-1電鍍鎳鍍液組成成份……………………..........................29 表3-1圖3-15(a)錫銀銅銲錫與鎳基材界面點1位置之EDS元素成份分析....63 表3-2圖3-15(a)錫銀銅銲錫與鎳基材界面點2位置之EDS元素成份分析……..64 圖1-1從1998年到2007年,使用覆晶接合技術的數量統計.............2 圖1-2共晶錫鉛銲錫與金屬銅片在200℃下反應(a)1分鐘和(b)10分鐘之界面顯微結構................................................3 圖1-3錫銀銲錫與電鍍鎳在251℃下迴焊接合後,界面Ni3Sn4介金屬化合物的型態,(a)反應時間180秒鐘,(b)反應時間600秒鐘…................5 圖1-4錫銀銲錫與無電鍍鎳-磷在251℃下迴焊接合後,界面Ni3Sn4介金屬化合物的型態,(a)反應時間30秒鐘,(b)反應時間180秒鐘,(c)反應時間600秒鐘…..6 圖1-5共晶錫銀銲錫與無電鍍鎳-磷在250℃經由不同迴焊時間之銲錫與無電鍍鎳-磷界面顯微結構圖,(a)迴焊2分鐘;(b)迴焊10分鐘;(c)迴焊30分鐘…....…8 圖1-6錫銀銲錫與無電鍍鎳接合試片在150℃下經由不同熱處理時間之界面微結構組織圖,(a)經由168小時,(b)500小時和(c)1000小時….…............9 圖1-7錫銀銅銲錫與無電鍍鎳-磷經由迴焊之後,孔洞(箭頭所指示位置)生成在(a)富磷鎳層內部,(b)三元Ni-Sn-P結構內部……………………………………........12 圖1-8在240℃下鎳-銅-錫等溫相圖,顯示靠近錫成分一端之相組成……....14 圖1-9錫銀銲錫與無電鍍鎳-磷經由255℃迴焊1秒鐘之後,錫銀銲錫與無電鍍鎳-磷界面顯微結構,(Au,Ni)Sn2與Ni3Sn4介金屬化合物生成在銲錫與無電鍍鎳-磷界面…………………………………………………...……...........................16 圖1-10TEM即時觀察在熱處理期間,錫銀銲錫與無電鍍鎳-磷接合界面顯微結構變化,隨著熱處理時間的增加,一新的界面反應層生成在鎳-錫-磷與無電鍍鎳-磷之間界面,三元鎳-錫-磷會成長而厚度增加….......……..............17 圖1-11(a)為純錫與銅金屬基材經由15秒鐘迴焊之後,再利用液態氮急速冷卻之接合界面顯微結構圖,(b)和(c)分別是圖(a)中A和B方形區域之放大圖,顯示Cu3Sn奈米晶形成在Cu-Sn非晶質擴散區中以及鄰近銅基材之非晶質Cu-Sn擴散區….19 圖1-11(d)為圖(a)中方形C區域之放大圖,顯示銅基材與非晶質擴散區界面顯微結構;(e)是圖(d)中虛線方形D區域之高解析TEM影像,顯示銅晶格接觸非晶質擴散區的界面為“之”字形的型態………...…………………………................20 圖1-12(a)銅基材與Cu3Sn介金屬化合物之界面顯微結構,(b)和(c)分別是圖(a)中虛線方形區域1和2之高解析TEM圖,顯示非晶質銅-錫擴散區內部生成Cu3Sn奈米晶胞..................................................21 圖1-13錫鋅銀銲錫與銅基材經由15秒鐘迴焊之後,再利用液態氮急速冷卻接合試片。(a)顯示原子聚集所形成的原子團簇與銅溶解在液態銲錫所形成的管狀區(Channel zone);(b)為圖(a)中虛線方形A區域之放大圖,顯示在銅晶格管狀區中的晶格空缺…………….......…………...........................…23 圖1-14錫鋅銀銲錫合金與銅金屬基材經由15秒鐘迴焊之後,從銅基材到錫鋅銀銲錫依序形成CuZn、Cu5Zn8、Ag5Zn8和AgZn3的介金屬化合物…….………....…24 圖2-1銅金屬片上電鍍鎳裝置示意圖…..........…………………..........30 圖2-2錫銀銲錫與鎳基材經由15秒鐘迴焊反應後,再利用液態氮急速冷卻之接合試片……..…………………..…….....................................31 圖3-1(a)共晶錫銀合金與電鍍鎳在250℃,經由5秒鐘接合反應後,銲錫合金與鎳基材界面顯微結構圖,(b)和(c)分別是圖(a)中A1到A2之EDS錫元素和鎳元素線掃描圖..................................................37 圖3-2(a)為錫銀銲錫合金與電鍍鎳迴焊5秒鐘後之橫截面顯微結構圖,(b)和(c)分別為圖(a)中圓圈1和2兩區域的選區繞射圖譜 (SADP)..…………………...38 圖3-3(a)錫銀銲錫與鎳層迴焊5秒鐘後之界面顯微結構圖,(b)為(a)圖中虛線方框放大圖,顯示緊鄰鎳層界面形成一非晶質結構,(c)為(b)圖中非晶質結構放大圖,奈米尺寸NiSn介金屬化合物生成在非晶質中。(d)為NiSn介金屬化合物傅立葉繞射圖譜...........………………………….........................39 圖3-4共晶錫銀銲錫與電鍍鎳基板經由250℃迴焊15秒鐘之後,銲錫合金與鎳基材接合界面微結構組織圖……....................................41 圖3-5(a)FIB影像顯示錫銀銲錫合金與鎳基材經由迴焊15秒鐘後之橫截面顯微結構圖,(b)為(a)圖中虛線方形區域之放大圖,顯示Sn-Ni介金屬層生成在銲錫與鎳基材界面................................................42 圖3-6錫銀銲錫合金與鎳基材在250℃下經由15秒鐘迴焊接合反應,(a)接合試片橫截面顯微結構;(b)圖(a)點1位置EDS元素分析圖譜;(c)圖(a)圓圈區域2之SAD繞射圖譜;(d)圖(a)圓圈區域3之NBDP圖譜….……………….............44 圖3-7(a)為錫銀銲錫與電鍍鎳迴焊15秒鐘後之接合試片顯微結構圖;(b)是(a)圖中虛線方形區域1的HRTEM影像,顯示數個NiSn奈米晶胞生成在非晶質基材中..45 圖3-8(a)為非晶質結構區域與鎳層界面之微結構組織圖,(b)為圖(a)中虛線方形區域1之高解析TEM顯微結構圖,顯示極緊鄰鎳層之結構,(c)為圖(b)中虛線長方形區域之放大圖,顯示與鎳層相互接觸的NiSn奈米晶胞。(錫銀銲錫與鎳經由15秒鐘的迴焊接合)..........................................46 圖3-9Ni-Sn二元相圖……….………………..…………….……................48 圖3-10(a)為錫銀銲錫與電鍍鎳迴焊5秒鐘之橫截面顯微結構圖;(b)為(a)圖虛線方框區域放大圖;(c)為(b)圖虛線方框區域放大圖,顯示緊鄰鎳層之區域;(d)顯示在鎳層與非晶質擴散區之間,鎳往銲錫擴散所形成的通道區(鎳溶解區)….52 圖3-11(a)為錫銀銲錫與電鍍鎳經由5秒鐘迴焊接合之界面顯微結構圖;(b)是(a)圖中虛線方形區域放大圖;(c)為(b)圖中虛線方形區域放大圖,HRTEM顯微結構圖顯示鎳結晶晶格以及緊鄰鎳層之非晶質結構;(d)為(c)圖虛線方形區域傅立葉繞射圖譜;(e)是(c)圖虛線區域反傅立葉影像......................54 圖3-12(a)為鎳基材與非晶質Ni-Sn擴散區之界面顯微結構;(b)顯示鎳溶解在液態銲錫所產生的之字形界面,以及在鎳溶解區中破碎的鎳晶格和鎳晶格之間的空缺。(錫銀銲錫與鎳經由5秒鐘迴焊接合)….…………………...……..........56 圖3-13在迴焊期間鎳金屬基材溶解在液態銲錫之示意圖。(a)液態熔融銲錫接觸固態鎳;(b)顯示鎳原子脫離鎳層,鎳晶格受熱影響而造成鎳晶格扭曲變形…...57 圖3-13在迴焊期間鎳金屬基材溶解在液態銲錫之示意圖。(c)鎳溶解在液態銲錫中而造成鎳晶格的瓦解、鎳晶格的扭曲變形與差排的形成,使鎳晶格與鎳溶解區接觸界面出現了“之”字形型態………….……………………………..................58 圖3-14(a)錫銀銅銲錫合金與電鍍鎳基材經由5秒鐘迴焊接合之橫截面顯微結構,(b)鎳基材與錫銀銅銲錫界面顯微結構圖........................61 圖3-15(a)鎳基材與錫銀銅銲錫迴焊接合5秒鐘之界面顯微結構圖。圖(a)中方形區域EDS元素面掃描分析(EDS mapping)顯示(b)鎳元素分佈、(c)銅元素分佈以及(d)錫元素分佈情形……………………………..………………...................62 圖3-16(a)錫銀銅銲錫與鎳基材迴焊接合5秒鐘之TEM微結構組織圖,(b)和(c)分別是(a)圖中虛線圓圈區域1和2之SAD圖譜…..…………………………………...…..65 圖3-17(a)TEM影像顯示錫銀銅銲錫與鎳基材經由迴焊5秒鐘之界面顯微結構,(b)鄰近鎳層界面區域顯示為一非晶質結構,(c)HRTEM影像顯示NiSn與Cu6Sn5介金屬化合物生成在非晶質基材中,(d)與(e)分別是NiSn奈米晶胞(911)和(202)結晶面之傅立業繞射圖譜……..……………..........................67 圖3-18(a)鄰近鎳層區域顯示為一非晶質結構,(b)HRTEM影像顯示Cu6Sn5與NiSn奈米晶胞生成在非晶質結構中。(錫銀銅銲錫與鎳基材經由5秒鐘迴焊接合)................................................68 圖3-19(a)Ni-Sn-Cu非晶質擴散區顯微結構,(b)為(a)圖中方形區域之放大IFFT影像,顯示非晶質結構內部存在著長程有序、短程有序原子排列以及原子團簇結構,(c)為(b)圖中區域1之放大圖,顯示長程有序結構周圍存在著短程有序結構。(錫銀銅銲錫與鎳基材經由5秒鐘迴焊接合)………………...........72 圖3-20(a)為鎳基材與非晶質擴散區之界面微結構組織圖,(b)是(a)圖中區域1之放大IFFT影像,顯示非晶質結構內部有許多小原子團簇,在原子團簇內部存在著原子空孔。(錫銀銅銲錫與鎳基材經由5秒鐘迴焊接合)…..……........73 圖3-21(a)顯示鎳基材與非晶質擴散區之界面顯微結構,(b)是(a)圖中區域1之放大ACF (Autocorrelation function)影像,顯示原子相互聚集而形成一六邊形結構。(錫銀銅銲錫與鎳基材經由5秒鐘迴焊接合)………….…..….....75 圖3-22(a)顯示鎳基材與非晶質擴散區之界面微結構組織圖,(b)為(a)圖中方形區域之HRTEM微結構組織圖,顯示NiSn介金屬化合物生成在鎳層界面上。(錫銀銅銲錫與鎳基材經由5秒鐘迴焊接合)…..……………………………….…..........78 圖3-23固態粒子生成自由能變化對粒子成核半徑關係圖............80 圖3-24異質成核與均質成核自由能變化值隨粒子成核半徑變化之關係圖….…82 圖3-25錫銀銅銲錫合金與鎳基材在5秒鐘迴焊反應之液/固界面反應行為。(a)液態熔融銲錫接觸固態鎳金屬基板;(b)鎳溶解在液態銲錫中而造成鎳晶格中形成許多的通道(Channel);(c)鎳、銅和錫原子的相互擴散而在銲錫與鎳基板之間形成Ni-Cu-Sn三元非晶質擴散區..…....……….........................85 圖3-25錫銀銅銲錫合金與鎳基材在5秒鐘迴焊反應之液/固界面反應行為。(d)NiSn介金屬化合物生成在Ni-Cu-Sn非晶質擴散區與鎳層界面;(e)Cu6Sn5與NiSn介金屬化合物生成在Ni-Cu-Sn三元非晶質擴散區中…….…...……...86 圖3-26(a)Ni-Sn非晶質擴散區與鎳層之界面顯微結構圖,(b)為圖(a)中虛線方形區域之高解析TEM顯微結構,(c)為圖(b)之反傅立葉影像,顯示非晶質結構中有奈米晶胞的生成........................................90 圖3-27(a)在100℃下經由時效48.125秒之非晶質基材顯微結構,(b)為圖(a)中虛線區域之放大圖,顯示三個奈米晶胞生成在非晶質中,(c)為圖(b)中虛線區域內之奈米晶胞微結構組織圖..................................91 圖3-28NiSn奈米晶胞與非晶質區域在100℃下不同加熱時間之顯微結構變化情形。(a)加熱前、(b)加熱48.125秒、(c)加熱48.75秒、(d)加熱57.5秒、(e)加熱63.75秒以及(f)加熱70秒................................92 圖3-29(a)為加熱前Ni-Sn非晶質擴散區顯微結構;緊鄰NiSn奈米晶之方形非晶質區域在100℃下不同加熱時間之顯微結構變化情形。(b)加熱前、(c)加熱51.875秒、(d)加熱52秒、(e)加熱52.125秒、(f)加熱52.25秒以及(g)加熱52.375秒..................................................94 圖3-30非晶質區域在100℃下不同加熱時間之顯微結構變化情形。(a)加熱前、(b)加熱70秒………..……………………................................95 圖3-31(a)顯示加熱前Ni-Sn非晶質擴散區顯微結構,(b)為圖(a)中方形區域之放大圖,顯示非晶質中長程有序結構以及存在著許多不同形狀(三角形或四邊形)的基本結構……...........................................97 圖3-32(a)為加熱50.25秒之Ni-Sn非晶質擴散區微結構組織;圖(a)中虛線方形區域1內部之基本結構隨著加熱時間的改變,顯微結構變化的情形。(b)加熱50.25秒、(c)加熱50.375秒和(d)加熱50.5秒…………………………….........99 圖3-33(a)為加熱50.625秒之Ni-Sn非晶質擴散區微結構組織;圖(a)中區域1在不同加熱時間中之非晶質內部基本結構變化。(b)加熱50.625秒以及(c)50.75秒…….……...……......................................100 圖3-34經由不同加熱時間,非晶質內部之基本結構變化情形。(a)加熱50.875秒、(b)加熱51秒和(c)加熱51.125秒......................101 圖3-35(a)加熱51.25秒之非晶質結構。經由不同加熱時間,非晶質內部原子的變化,(b)加熱51.25秒、(c)加熱51.375秒、(d)加熱51.5秒、(e)加熱51.625秒、(f)加熱51.75秒和(g) 加熱51.875秒…………………………….......103 圖3-35經由不同加熱時間,非晶質內部原子的變化,(h)加熱52秒、(i)加熱52.125秒、(j)加熱52.25秒、(k)加熱52.375秒、(l)加熱52.5秒和(m)加熱52.625秒……….…..………................................104 圖3-35經由不同加熱時間,非晶質內部原子的變化,(n)加熱52.75秒、(o)加熱52.875秒、(p)加熱53秒、(q)加熱53.125秒、(r)加熱53.25秒和(s)加熱53.375秒……......…………...............................106

    1. K. N. Tu and K. Zeng, “Tin-Lead (SnPb) Solder Reaction in Flip Chip Technology,” Materials Science and Engineering R, Vol. 34, 2001, pp. 1〜58.
    2. W. Yang, L. E. Felton and Jr R. W. Messler, “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints,” Journal of Electronic Materials, Vol. 24, No. 10, 1995, pp. 1465〜1472.
    3. H. K. Kim, H. K. Liou and K. N. Tu, “Three-Dimensional
    Morphology of a Very Rough Interface Formed in the Soldering
    Reaction between Eutectic SnPb and Cu,” Applied Physics Letters, Vol. 66, 1995, pp. 2337〜2339.
    4. S. Ishikawa, E. Hashino, T. Kono and K. Tatsumi, “IMC Growth of Solid State Reaction between Ni UBM and Sn-3Ag-0.5Cu and Sn-3.5Ag Solder Bump Using Ball Place Bumping Method during Aging,” Materials Transactions, Vol. 46, No. 11, 2005, pp. 2351~2358.
    5. C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao and D. S. Jiang, “Effects of Limited Cu Supply on Soldering Reactions between SnAgCu and Ni,” Journal of Electronic Materials, Vol. 35, No. 5, 2006, pp. 1017~1024.
    6. N. Torazawa, S. Arai, Y. Takase, K. Sasaki and H. Saka,
    “Transmission Electron Microscopy of Interfaces in Joints between Pb-Free Solders and Electroless Ni-P,” Materials Transactions, Vol. 44, No. 7, 2003, pp. 1438~1447.
    7. T. Hiramori, M. Ito, Y. Tanii, A. Hirose and K. F. Kobayashi, “Sn-Ag Based Solders Bonded to Ni-P/Au Plating:Effects of Interfacial Structure on Joint Strength,” Materials Transactions, Vol. 44, No. 11, 2003, pp. 2375~2383.
    8. C. W. Hwang, K. Suganuma, M. Kiso and S. Hashimoto, “Influence of Cu Addition to Interface Microstructure between Sn-Ag Solder and Au/Ni-6P Plating,” Journal Electronic Materials, Vol. 33, No. 10, 2004, pp. 1200~1209.
    9. A. Kumar, M. He and Z. Chen, “Barrier Properties of Thin Au/Ni-P Under Bump Metallization for Sn-3.5Ag Solder,” Surface and Coatings Technology, Vol. 198, 2005, pp. 283~286.
    10. V. Vuorinen, T. Laurila, H. Yu and J. K. Kivilahti, “Phase Formation between Lead-Free Sn-Ag-Cu Solder and Ni(P)/Au Finishes,” Journal of Applied Physics, Vol. 99, 2006, pp. 023530.
    11. T. Laurila, V. Vuorinen and J. K. Kivilahti, “Interfacial Reactions between Lead-Free Solders and Common Base Materials,” Materials Science and Engineering R, Vol. 49, 2005, pp. 1〜60.
    12. M. He, W. H. Lau, G. Qi and Z. Chen, “Intermetallic Compound Formation between Sn-3.5Ag Solder and Ni-based Metallization during Liquid State Reaction,” Thin Solid Films, Vol. 462-463, 2004, pp. 376~383.
    13. A. Kumar and Z. Chen, “Interdependent Intermetallic Compound Growth in an Electroless Ni-P/Sn-3.5Ag Reaction Couple,” Journal of Electronic Materials, Vol. 40, No. 2, 2011, pp. 213~223.
    14. Y. C. Sohn, J. Yu, S. K. Kang, D. Y. Shih and T. Y. Lee, “Spalling of Intermetallic Compounds during the Reaction between Lead-Free Solders and Electroless Ni-P Metallization,” Journal of Materials Research, Vol. 19, No. 8, 2004, pp. 2428〜2436.
    15. P. Sun, C. Andersson, X. Wei, Z. Cheng, Z. Lai, D. Shangguan and J. Liu, “High Temperature Aging Study of Intermetallic Compound Formation of Sn-3.5Ag and Sn-4.0Ag-0.5Cu Solders on Electroless Ni(P) Metallization,” Proceedings of 56th Electronic Components and Technology Conference, Sheraton San Diego Hotel & Marina San Diego, CA, 30 May - 02 Jun, 2006, pp. 1468〜1475.
    16. C. Fuchs, T. Schreck and M. Kaloudis, “Interfacial reactions between Sn–57Bi–1Ag solder and electroless Ni-P/immersion Au under solid-state aging,” Journal of Materials Science, Vol. 47, 2012, pp. 4036〜4041.
    17. J. Wang, L. G. Zhang, H. S. Liu, L. B. Liu and Z. P. Jin, “Interfacial Reaction between Sn-Ag Alloys and Ni Substrate,” Journal of Alloys and Compounds, Vol. 455, 2008, pp. 159~163.
    18. W. K. Choi and H. M. Lee, “Effect of Ni Layer Thickness and Soldering Time on Intermetallic Compound Formation at the Interface between Molten Sn-3.5Ag and Ni/Cu Substrate,” Journal of Electronic Materials, Vol. 28, No. 11, 1999, pp. 1251~1255.
    19. J. Shen, Y. C. Chan and S. Y. Liu, “Growth Mechanism of Ni3Sn4 in a Sn/Ni Liquid/Solid Interfacial Reaction,” Acta Materialia, Vol. 57, 2009, pp. 5196~5206.
    20. G. A. Walker, P. W. Dehaven and C. C. Goldsmith, “Kinetics of Intermetallic Formation During Soldering of Chips to Substrates,” Proceedings of 34th Electronic Components and Technology Conference, New Orleans, LA, May 14–16, 1984, pp. 125〜128.
    21. S. K. Kang, R. S. Rai and S. Purushothaman, “Interfacial Reactions During Soldering with Lead-Tin Eutectic and Lead (Pb)-Free, Tin-Rich Solders,” Journal of Electronic Materials, Vol. 25, No. 7, 1996, pp. 1113〜1120.
    22. A. Sharif, Y. C. Chan, M. N. Islam and M. J. Rizvi, “Dissolution of Electroless Ni Metallization by Lead-Free Solder Alloys,” Journal of Alloys and Compounds, Vol. 388, 2005, pp. 75〜82.
    23. H. B. Kang, J. W. Lee, J. H. Bae, M. H. Park, J. W. Yoon, S. B. Jung, J. S. Ju and C. W. Yang, “Initial Interfacial Reaction Layers Formed in Sn-3.5Ag Solder/Electroless Ni-P Plated Cu Substrate System,”
    Journal of Materials Research, Vol. 23, No. 8, 2008, pp. 2195〜2201.
    24. J. W. Jang, D. R. Frear, T. Y. Lee and K. N. Tu, “Morphology of Interfacial Reaction between Lead-Free Solders and Electroless Ni-P Under Bump Metallization,” Journal of Applied Physics, Vol. 88, No. 11, 2000, pp. 6359〜6363.
    25. C. Y. Lin, C. C. Jao, C. Lee and Y. W. Yen, “The Effect of Non-Reactive Alloying Elements on the Growth Kinetics of the Intermetallic Compound between Liquid Sn-Based Eutectic Solders and Ni Substrates,” Journal of Alloys and Compounds, Vol. 440, 2007, pp. 333〜340.
    26. G. Ghosh, “Coarsening Kinetics of Ni3Sn4 Scallops during
    Interfacial Reaction between Liquid Eutectic Solders and Cu/Ni/Pd Metallization,” Journal of Applied Physics, Vol. 88, No. 11, 2000, pp. 6887〜6896.
    27. P. G. Kim, J. W. Jang, T. Y. Lee and K. N. Tu, “Interfacial Reaction and Wetting Behavior in Eutectic SnPb Solder on Ni/Ti Thin Films and Ni Foils,” Journal of Applied Physics, Vol. 86, No. 12, 1999, pp. 6746〜6751.
    28. J. Wang, H. S. Liu, L. B. Liu and Z. P. Jin, “Interfacial Reaction between Sn-Bi Alloy and Ni Substrate,” Journal of Electronic Materials, Vol. 35, No. 10, 2006, pp. 1842〜1847.
    29. J. F. Li, S. H. Mannan, M. P. Clode, K. Chen, D. C. Whalley, C. Liu and D. A. Hutt, “Comparison of Interfacial Reactions of Ni and Ni-P in Extended Contact with Liquid Sn-Bi-Based Solders,” Acta Materialia, Vol. 55, 2007, pp. 737〜752.
    30. M. Oh, Doctoral Dissertation, Lehigh University, 1994.
    31. S. Bader, W. Gust and H. Hieber, “Rapid Formation of Intermetallic Compounds by Interdiffusion in the Cu-Sn and Ni-Sn Systems,” Acta Metallurgica et Materialia, Vol. 43, No. 1, 1995, pp. 329〜337.
    32. H. F. Hsu and S. W. Chen, “Phase Equilibria of the Sn-Ag-Ni Ternary System and Interfacial Reactions at the Sn-Ag/Ni joints,” Acta Materialia, Vol. 52, 2004, pp. 2541〜2547.
    33. D. Gur and M. Bamberger, “Reactive Isothermal Solidification in the Ni-Sn System,” Acta Materialia, Vol. 46, No. 14, 1998, pp. 4917〜4923.
    34. H. B. Kang, J. H. Bae, J. W. Yoon, S. B. Jung, J. Park and C. W. Yang, “Microstructure of Interfacial Reaction Layer in Sn-Ag-Cu/Electroless Ni(P) Solder Joint,” Journal of Materials Science, Vol. 22, 2011, pp. 1308〜1312.
    35. D. Q. Yu, C. M. L. Wu, D. P. He, N. Zhao, L. Wang and J. K. L. Lai, “Effects of Cu Contents in Sn-Cu Solder on the Composition and Morphology of Intermetallic Compounds at a Solder/Ni Interface,” Journal of Materials Research, Vol. 20, No. 8, 2005, pp. 2205〜2212.
    36. C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, “Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni,” Journal of Electronic Materials, Vol. 31, No. 6, 2002, pp. 584〜590.
    37. W. T. Chen, C. E. Ho and C. R. Kao, “Effect of Cu Concentration on the Interfacial Reactions between Ni and Sn-Cu Solders,” Journal of Materials Research, Vol. 17, No. 2, 2002, pp. 263〜266.
    38. J. W. Yoon and S. B. Jung, “Interfacial Reactions between Sn–0.4Cu Solder and Cu Substrate with or without ENIG Plating Layer during Reflow Reaction,” Journal of Alloys and Compounds, Vol. 396, 2005, pp. 122〜127.
    39. W. C. Luo, C. E. Ho, J. Y. Tsai, Y. L. Lin and C. R. Kao, “Solid-State Reactions between Ni and Sn–Ag–Cu Solders with Different Cu Concentrations,” Materials Science and Engineering A, Vol. 396, 2005, pp. 385〜391.
    40. Y. D. Jeon, K. W. Paik, A. Ostmann and H. Reichl, “Effects of Cu Contents in Pb-Free Solder Alloys on Interfacial Reactions and Bump Reliability of Pb-Free Solder Bumps on Electroless Ni-P Under-Bump Metallurgy,” Journal of Electronic Materials, Vol. 34, No. 1, 2005, pp. 80〜90.
    41. S. T. Kao and J. G. Duh, “Interfacial Reactions and Compound Formation of Sn-Ag-Cu Solders by Mechanical Alloying on Electroless Ni-P/Cu Under Bump Metallization,” Journal of Electronic Materials, Vol. 34, No. 8, 2005, pp. 1129〜1134.
    42. K. Zeng and K. N. Tu, “Six Cases of Reliability Study of Pb-Free Solder Joints in Electronic Packaging Technology,” Materials Science and Engineering R, Vol. 38, 2002, pp. 55~105.
    43. C. E. Ho, S. C. Yang and C. R. Kao, “Interfacial Reaction Issues for Lead-Free Electronic Solders,” Journal of Materials Science-Materials in Electronics, Vol. 18, 2007, pp. 155〜174.
    44. Y. D. Jeon, S. Nieland, A. Ostmann, H. Reichl and K. W. Paik, “A Study on Interfacial Reactions between Electroless Ni-P Under Bump Metallization and 95.5Sn-4.0Ag-0.5Cu Alloy,” Journal of Electronic Materials, Vol. 32, No. 6, 2003, pp. 548〜557.
    45. H. B. Kang, J. H. Bae, J. W. Lee, M. H. Park, J. W. Yoon, S. B. Jung and C. W. Yang, “Characterization of Interfacial Reaction Layers Formed Between Sn-3.5Ag Solder and Electroless Ni-Immersion Au-Plated Cu Substrates,” Journal of Electronic Materials, Vol. 37, No. 1, 2008, pp. 84〜89.
    46. H. B. Kang, J. H. Bae, J. W. Yoon, S. B. Jung, J. Park and C. W. Yang, “In Situ TEM Characterization of Interfacial Reaction in Sn–3.5Ag/Electroless Ni(P) Solder Joint,” Scripta Materialia, Vol. 64, 2011, pp. 597〜600.
    47. C. H. Yu and K. L. Lin, “The Atomic-Scale Studies of the Behavior of the Crystal Dissolution in a Molten Metal,” Chemical Physics Letters, Vol. 418, 2006, pp. 433〜436.
    48. C. C. Pan, C. H. Yu and K. L. Lin, “The Amorphous Origin and the Nucleation of Intermetallic Compounds Formed at the Interface during the Soldering of Sn–3.0Ag–0.5Cu on a Cu Substrate,” Applied Physics Letters, Vol. 93, 2008, pp. 061912.
    49. C. H. Yu and K. L. Lin, “Early Dissolution Behavior of Copper in a Molten Sn-Zn-Ag Solder,” Journal of Materials Research, Vol. 20, No. 3, 2005, pp. 666〜671.
    50. C. H. Yu and K. L. Lin, “Early Stage Soldering Reaction and Interfacial Microstructure Formed between Molten Sn-Zn-Ag Solder and Cu Substrate,” Journal of Materials Research, Vol. 20, No. 5, 2005, pp. 1242〜1249.
    51. C. C. Pan and K. L. Lin, “The Interfacial Amorphous Double Layer and the Homogeneous Nucleation in Reflow of a Sn-Zn Solder on Cu Substrate,” Journal of Applied Physics, Vol. 109, 2011, pp. 103513.
    52. F. Ochoa, J. J. Williams and N. Chawla, “Effects of Cooling Rate on the Microstructure and Tensile Behavior of a Sn-3.5wt.%Ag Solder,” Journal of Electronic Materials, Vol. 32, No. 12, 2003, pp. 1414〜1420.
    53. F. Ochoa, X. Deng and N. Chawla, “Effects of Cooling Rate on Creep Behavior of a Sn-3.5Ag Alloy,” Journal of Electronic Materials, Vol. 33, No. 12, 2004, pp. 1596〜1607.
    54. M. Kerr and N. Chawla, “Creep Deformation Behavior of Sn–3.5Ag Solder/Cu Couple at Small Length Scales,” Acta Materialia, Vol. 52, 2004, pp. 4527〜4535.
    55. K. Y. Lee and M. Li, “Interfacial Microstructure Evolution in Pb-Free Solder Systems,” Journal of Electronic Materials, Vol. 32, No. 8, 2003, pp. 906〜912.
    56. Z. Chen, A. Kumar and M. Mona, “Effect of Phosphorus Content on Cu/Ni-P/Sn-3.5Ag Solder Joint Strength after Multiple Reflows,” Journal of Electronic Materials, Vol. 35, No. 12, 2006, pp. 2126〜2134.
    57. JCPDS-ICDD 2002, 1994, card number: 040850.
    58. JCPDS-ICDD 2002, 1994, card number: 650297.
    59. POWDER DIFFRACTION FILE, Sets 25 to 26, Inorganic Volume, published by the JCPDS, 1973, card number: 26-1289.
    60. A. Kumar, Z. Chen, S. G. Mhaisalkar, C. C. Wong, P. S. Teo and V. Kripesh, “Effect of Ni–P Thickness on Solid-State Interfacial Reactions between Sn–3.5Ag Solder and Electroless Ni–P Metallization on Cu Substrate,” Thin Solid Films, Vol. 504, 2006, pp. 410〜415.
    61. C. M. Liu, C. E. Ho, W. T. Chen and C. R. Kao, “Reflow Soldering and Isothermal Solid-State Aging of Sn-Ag Eutectic Solder on Au/Ni Surface Finish,” Journal of Electronic Materials, Vol. 30, No. 9, 2001, pp. 1152〜1156.
    62. H. Y. Chen and C. Chen, “Kinetic Study of the Intermetallic Compound Formation between Eutectic Sn-3.5Ag Alloys and Electroplated Ni Metallization in Flip-Chip Solder Joints,” Journal of Materials Research, Vol. 27, No. 8, 2012, pp. 1169〜1177.
    63. T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., edited by H. Okamoto, P. R. Subramanian, and L. Kacprzak (ASM International, Materials Park, OH, 1990).
    64. H. P. Rooksby, “An X-Ray Study of Tin-Nickel Electrodeposits,” Journal of the Electrodepositors' Technical Society, Vol. 27, 1951, pp. 153〜160.
    65. C. C. Lo, “Structure of Electrodeposited Equiatomic Tin-Nickel Alloy,” Journal of Applied Physics, Vol. 51, No. 4, 1980, pp. 2007〜2013.
    66. M. Antler, “Contact Resistance of Tin-Nickel Alloy Electrodeposits,” Journal of the Electrochemical Society, Vol. 125, No. 3, 1978, pp. 420〜423.
    67. J. E. Bennett and H. G. Tompkins, “Investigations of an
    Electrodeposited Tin-Nickel Alloy,” Journal of The Electrochemical Society, Vol. 123, No. 7, 1976, pp. 999〜1003.
    68. J. A. Augis and J. E. Bennett, “Sputter Deposition of a Metastable Equiatomic Tin-Nickel Alloy,” Journal of The Electrochemical Society, Vol. 124, No. 9, 1977, pp. 1455〜1458.
    69. B. E. Wynne, J. W. Edington and G. P. Rothwell, “The
    Transformation on Annealing of the Metastable Electrodeposit, NiSnx, to Its Equilibrium Phases,” Metallurgical and Materials Transactions B, Vol. 3, No. 1, 1972, pp. 301〜305.
    70. J. A. Augis and J. E. Bennett, “Kinetics of the Transformation of Metastable Tin-Nickel Deposits,” Journal of The Electrochemical Society, Vol. 125, No. 2, 1978, pp. 330〜334.
    71. J. A. Augis and J. E. Bennett, “Kinetics of the Transformation of Metastable Tin-Nickel Deposits,” Journal of The Electrochemical Society, Vol. 125, No. 2, 1978, pp. 335〜339.
    72. M. Clarke and P. K. Dutta, “The Heat of Formation of the
    Single-Phase NiSn Electrodeposit,” Journal of Physics D: Applied Physics, Vol. 4, 1971, pp. 1652〜1656.
    73. G. Ghosh, “First-Principles Calculation of Phase Stability and Cohesive Properties of Ni-Sn Intermetallics,” Metallurgical and Materials Transactions A, Vol. 40A, 2009, pp. 4〜23.
    74. S. A. Belyakov and C. M. Gourlay, “NiSn4 Formation in As-Soldered Ni-Sn and ENIG-Sn Couples,” Journal of Electronic Materials, Vol. 41, No. 12, 2012, pp. 3331〜3341.
    75. C. M. Chen and S. W. Chen, “Electromigration Effects upon the Low-Temperature Sn/Ni Interfacial Reactions,” Journal of Materials Research, Vol. 18, No. 6, 2003, pp. 1293〜1296.
    76. W. J. Boettinger, M. D. Vaudin, M. E. Williams, L. A. Bendersky and W. R. Wagner, “Electron Backscattered Diffraction and Energy Dispersive X-ray Spectroscopy Study of the Phase NiSn4,” Journal of Electronic Materials, Vol. 32, No. 6, 2003, pp. 511〜515.
    77. L. J. Zhang, L. Wang, X. M. Xie and W. Kempe, “An Investigation on Thermal Reliability of Underfilled PBGA Solder Joints,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 4, 2002, pp. 284〜288.
    78. C. H. Wang, C. Y. Kuo, H. H. Chen and S. W. Chen, “Effects of Current Density and Temperature on Sn/Ni Interfacial Reactions under Current Stressing,” Intermetallics, Vol. 19, 2011, pp. 75〜80.
    79. S. A. Belyakov and C. M. Gourlay, “NiSn4 Formation during the Solidification of Sn-Ni Alloys,” Intermetallics, Vol. 25, 2012, pp. 48〜59.
    80. JCPDS-ICDD 2002, 1994, card number: 451488.
    81. C. H. Ma and R. A. Swalin, “A Study of Solute Diffusion in Liquid Tin,” Acta Metallurgica, Vol. 8, 1960, pp. 388〜395.
    82. K. N. Tu, Solder joint technology: materials, properties, and reliability, Springer, ISBN 978-0-387-38890-8, 2007, 368 pages.
    83. A. Sharif, M. N. Islam and Y. C. Chan, “Interfacial Reactions of BGA Sn-3.5%Ag-0.5%Cu and Sn-3.5%Ag Solders during High-Temperature Aging with Ni/Au Metallization,” Materials Science and Engineering B, Vol. 113, 2004, pp. 184〜189.
    84. P. Oberndorff, Doctoral Dissertation, Technical University of Eindhoven, 2001.
    85. C. N. Liao and C. T. Wei, “Effect of Intermetallic Compound Formation on Electrical Properties of Cu/Sn Interface during Thermal Treatment,” Journal of Electronic Materials, Vol. 33, No. 10, 2004, pp. 1137〜1143.
    86. Z. M. Sun, D. C. Pan, X. W. Lei and J. G. Mao, “Sm2NiSn4: The Intermediate Structure Type between ZrSi2 and CeNiSi2,” Journal of Solid State Chemistry, Vol. 179, 2006, pp. 3378〜3384.
    87. T. D. de la Rubia and G. Gilmer, “Cluster Nucleation: Watching Nanoclusters Nucleate,” Nature Materials, Vol. 1, 2002, pp. 89〜90.
    88. U. Kaiser, D. A. Muller, J. L. Grazul, A. Chuvilin and M. Kawasaki, “Direct Observation of Defect-Mediated Cluster Nucleation,” Nature Materials, Vol. 1, 2002, pp. 102〜105.
    89. W. K. Luo, H. W. Sheng, F. M. Alamgir, J. M. Bai, J. H. He and E. Ma, “Icosahedral Short-Range Order in Amorphous Alloys,” Physical Review Letters, Vol. 92, 2004, pp. 145502-1〜145502-4.
    90. B. S. Murty, D. H. Ping and K. Hono, “Nanoquasicrystallization of Binary Zr-Pd Metallic Glasses,” Applied Physics Letters, Vol. 77, No. 8, 2000, pp. 1102〜1104.
    91. H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai and E. Ma, “Atomic Packing and Short-to-Medium-Range Order in Metallic Glasses,” Nature, Vol. 439, 2006, pp. 419〜425.
    92. X. F. Zhang and R. Wang, “Short-Range Order in Nanoscale
    Amorphous Intergranular Films in Liquid-Phase Sintered Silicon Carbide,” Applied Physics Letters, Vol. 89, 2006, pp. 211902-1〜211902-3.
    93. S. Hata, S. Matsumura, N. Kuwano, K. Oki and D. Shindo, “Short Range Order in Ni4Mo and Its High Resolution Electron Microscope Images,” Acta Materialia, Vol. 46, No. 14, 1998, pp. 4955〜4961.
    94. D. A. Porter, K. E. Easterling and M. Y. Sherif, Phase
    Transformations in Metals and Alloys, Third Edition, Taylor ﹠ Francis Group, ISBN 978-1-4200-6210-6, 2008, pp. 181〜192.
    95. Robert E. Reed-Hill, Physical Metallurgy Principles, Third Edition, PWS Publishing Company, ISBN 0-534-92173-6, 1991, pp. 479〜498.
    96. D. B. Migas, M. Iannuzzi, L. Miglio, F. L. Via and M. G. Grimaldi, “Estimation of the Critical Radius for the Nucleation of the C54 Phase in C49 TiSi2:Role of the Difference in Density,” Materials Research Society Symposium Proceedings, Vol. 580, 2000, pp. 129〜134.
    97. Z. Ma and L. H. Allen, “Kinetic Mechanisms of the C49-to-C54 Polymorphic Transformation in Titanium Disilicide Thin Films: A Microstructure-Scaled Nucleation-Mode Transition,” Physical Review B, Vol. 49, No. 19, 1994, pp. 13501〜13511.
    98. S. Privitera, F. La Via, C. Spinella, S. Quilici, A. Borghesi, F. Meinardi, M. G. Grimaldi and E. Rimini, “Nucleation and Growth of C54 Grains into C49 TiSi2 Thin Films Monitored by Micro-Raman Imaging,” Journal of Applied Physics, Vol. 88, No. 12, 2000, pp. 7013〜7019.
    99. M. S. Alessandrino, S. Privitera, M. G. Grimaldi, C. Bongiorno, S. Pannitteri and F. La Via, “C49-C54 Phase Transition in Nanometric Titanium Disilicide Grains,”Journal of Applied Physics, Vol. 95, No. 4, 2004, pp. 1977〜1985.
    100. S. Y. Lin, “Vibrational Local Modes of a-SiO2:H and Variation of Local Modes in Different Local Environments,” Journal of Applied Physics, Vol. 82, No. 12, 1997, pp. 5976〜5982.
    101.R. G. Hennig, P. A. Fedders and A. E. Carlsson, “Electronic Structure of Dangling Bonds in Amorphous Silicon Studied via a Density-Matrix Functional Method,” Physical Review B, Vol. 66, 2002, pp. 195213-1〜195213-6.

    下載圖示 校內:2014-08-28公開
    校外:2015-08-28公開
    QR CODE