| 研究生: |
林育瑋 Lin, Yu-Wei |
|---|---|
| 論文名稱: |
錫銀/錫銀銅銲錫與鎳基材在迴焊初始階段之界面反應行為 The Behaviors of the Sn-Ag/Ni and Sn-Ag-Cu/Ni Interfacial Reactions during the Early Stage of Reflow |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 界面反應 、非晶質擴散區 、奈米晶胞 、異質成核 、均質成核 、臨場即時觀察 |
| 外文關鍵詞: | Interfacial reactions, Amorphous diffusion zone, Nano cell, Homogeneous nucleation, Heterogeneous nucleation, In-situ observations |
| 相關次數: | 點閱:93 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討錫銀以及錫銀銅無鉛銲錫合金與鎳基材在迴焊初期階段焊錫反應期間,液態銲錫與固態鎳界面反應行為,進一步瞭解界面介金屬化合物生成機制。
錫銀與錫銀銅銲錫合金分別與電鍍鎳層在250 ℃下以短時間迴焊接合後,再利用液態氮將接合試片進行快速急冷,以保持銲錫與鎳基材液/固相反應時的狀態。錫銀銲錫與鎳基材在5秒鐘以及15秒鐘迴焊反應期間,Ni-Sn非晶質擴散區形成在銲錫與鎳基材之間界面,在這個非晶質擴散區內部並且形成奈米尺寸的介穩態NiSn介金屬化合物,此NiSn介金屬化物也會形成在接觸鎳層的界面上;錫銀銅銲錫與電鍍鎳層經由5秒鐘短時間迴焊反應後,在錫銀銅與鎳基材界面間會生成三元Ni-Sn-Cu非晶質擴散區,這層非晶質擴散區內部會形成NiSn與Cu6Sn5兩種介金屬奈米晶,本研究也觀察非晶質擴散區內部微結構組織,進一步探討介金屬化合物在凝核期間的結構演進。另外,在三元非晶質擴散區與鎳基材之間界面會形成NiSn凝核區,介穩態NiSn介金屬化合物生成在接觸鎳層界面上。
因此,當液態錫銀與錫銀銅和固態鎳反應時,首先會在銲錫與鎳基材界面形成一層非晶質擴散區,擴散區內部會有介金屬奈米晶胞的生成,介金屬化合物也會形成在接觸鎳層界面上,介金屬化合物形成的機制可能同時藉由異質成核與均質成核的方式。當銲錫與鎳基材進行迴焊反應時,鎳晶格呈現之字形途徑溶解到液態銲錫中。
另外,本研究也藉由TEM臨場即時觀察Ni-Sn非晶質擴散區在100℃加熱期間的結構變化。在加熱期間,非晶質中的奈米晶胞會成長,非晶質內部的基本結構也會因為原子的變動而造成基本結構形狀的改變,甚至瓦解,而基本結構中原子與原子之間的鍵結所形成的dangling bond,會造成原子鍵結發生彎曲、拉長的現象。
This study focused on the behaviors of Sn-3.5Ag/Ni and Sn-3.0Ag-0.5Cu/Ni interfacial reactions during the early stage soldering process. The formation mechanism of the interfacial intermetallic compounds and the dissolution behavior of Ni substrate were further investigated in this study.
Soldering of the Sn-Ag and Sn-Ag-Cu solders on the electroplated Ni were performed at 250℃ for the short reaction time. In order to reserve the status of the reaction between liquid solder and solid Ni, the soldered specimens were quenched rapidly by the liquid nitrogen. An amorphous Ni-Sn diffusion zone formed at the interface between solder and Ni in the periods of reflow for 5s and 15s. The formation of metastable NiSn with the nano size was observed within an amorphous diffusion zone as well as in contact with Ni layer. In addition, the ternary Ni-Sn-Cu amorphous diffusion zone formed at the interface between Sn-Ag-Cu solder and Ni layer after reflow for 5s. The formation of nanocrystalline NiSn and Cu6Sn5 intermetallic compounds was observed within the ternary amorphous diffusion zone. To analyze further the amorphous diffusion zone finds the possible evolution of intermetallic structure during nucleation. Metastable NiSn compound formed in contact with Ni layer and resulted in the formation of NiSn nucleation zone between an amorphous zone and Ni layer.
When the liquid Sn-Ag and Sn-Ag-Cu solders reacted with solid Ni, an amorphous diffusion zone formed at the solder/Ni interface. Nanocrystalline intermetallic compounds formed not only in the amorphous diffusion zone but also in contact with the Ni layer. The formation of interfacial intermetallic compounds may take place through the homogeneous nucleation and heterogeneous nucleation. The Ni substrate dissolved into the molten solder during reflow. The formation of zigzag structure shows the dissolution behavior of Ni substrate.
In addition, the behavior of Ni-Sn amorphous diffusion zone was investigated with in-situ TEM observations during heating at 100℃. The growth of the nano cell took place within an amorphous diffusion zone during heating. The atomic interactions resulted in the transition and disintegration of base structure. The formation of dangling bond induced the deformation of the bonding between the atoms in the base structure.
1. K. N. Tu and K. Zeng, “Tin-Lead (SnPb) Solder Reaction in Flip Chip Technology,” Materials Science and Engineering R, Vol. 34, 2001, pp. 1〜58.
2. W. Yang, L. E. Felton and Jr R. W. Messler, “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints,” Journal of Electronic Materials, Vol. 24, No. 10, 1995, pp. 1465〜1472.
3. H. K. Kim, H. K. Liou and K. N. Tu, “Three-Dimensional
Morphology of a Very Rough Interface Formed in the Soldering
Reaction between Eutectic SnPb and Cu,” Applied Physics Letters, Vol. 66, 1995, pp. 2337〜2339.
4. S. Ishikawa, E. Hashino, T. Kono and K. Tatsumi, “IMC Growth of Solid State Reaction between Ni UBM and Sn-3Ag-0.5Cu and Sn-3.5Ag Solder Bump Using Ball Place Bumping Method during Aging,” Materials Transactions, Vol. 46, No. 11, 2005, pp. 2351~2358.
5. C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao and D. S. Jiang, “Effects of Limited Cu Supply on Soldering Reactions between SnAgCu and Ni,” Journal of Electronic Materials, Vol. 35, No. 5, 2006, pp. 1017~1024.
6. N. Torazawa, S. Arai, Y. Takase, K. Sasaki and H. Saka,
“Transmission Electron Microscopy of Interfaces in Joints between Pb-Free Solders and Electroless Ni-P,” Materials Transactions, Vol. 44, No. 7, 2003, pp. 1438~1447.
7. T. Hiramori, M. Ito, Y. Tanii, A. Hirose and K. F. Kobayashi, “Sn-Ag Based Solders Bonded to Ni-P/Au Plating:Effects of Interfacial Structure on Joint Strength,” Materials Transactions, Vol. 44, No. 11, 2003, pp. 2375~2383.
8. C. W. Hwang, K. Suganuma, M. Kiso and S. Hashimoto, “Influence of Cu Addition to Interface Microstructure between Sn-Ag Solder and Au/Ni-6P Plating,” Journal Electronic Materials, Vol. 33, No. 10, 2004, pp. 1200~1209.
9. A. Kumar, M. He and Z. Chen, “Barrier Properties of Thin Au/Ni-P Under Bump Metallization for Sn-3.5Ag Solder,” Surface and Coatings Technology, Vol. 198, 2005, pp. 283~286.
10. V. Vuorinen, T. Laurila, H. Yu and J. K. Kivilahti, “Phase Formation between Lead-Free Sn-Ag-Cu Solder and Ni(P)/Au Finishes,” Journal of Applied Physics, Vol. 99, 2006, pp. 023530.
11. T. Laurila, V. Vuorinen and J. K. Kivilahti, “Interfacial Reactions between Lead-Free Solders and Common Base Materials,” Materials Science and Engineering R, Vol. 49, 2005, pp. 1〜60.
12. M. He, W. H. Lau, G. Qi and Z. Chen, “Intermetallic Compound Formation between Sn-3.5Ag Solder and Ni-based Metallization during Liquid State Reaction,” Thin Solid Films, Vol. 462-463, 2004, pp. 376~383.
13. A. Kumar and Z. Chen, “Interdependent Intermetallic Compound Growth in an Electroless Ni-P/Sn-3.5Ag Reaction Couple,” Journal of Electronic Materials, Vol. 40, No. 2, 2011, pp. 213~223.
14. Y. C. Sohn, J. Yu, S. K. Kang, D. Y. Shih and T. Y. Lee, “Spalling of Intermetallic Compounds during the Reaction between Lead-Free Solders and Electroless Ni-P Metallization,” Journal of Materials Research, Vol. 19, No. 8, 2004, pp. 2428〜2436.
15. P. Sun, C. Andersson, X. Wei, Z. Cheng, Z. Lai, D. Shangguan and J. Liu, “High Temperature Aging Study of Intermetallic Compound Formation of Sn-3.5Ag and Sn-4.0Ag-0.5Cu Solders on Electroless Ni(P) Metallization,” Proceedings of 56th Electronic Components and Technology Conference, Sheraton San Diego Hotel & Marina San Diego, CA, 30 May - 02 Jun, 2006, pp. 1468〜1475.
16. C. Fuchs, T. Schreck and M. Kaloudis, “Interfacial reactions between Sn–57Bi–1Ag solder and electroless Ni-P/immersion Au under solid-state aging,” Journal of Materials Science, Vol. 47, 2012, pp. 4036〜4041.
17. J. Wang, L. G. Zhang, H. S. Liu, L. B. Liu and Z. P. Jin, “Interfacial Reaction between Sn-Ag Alloys and Ni Substrate,” Journal of Alloys and Compounds, Vol. 455, 2008, pp. 159~163.
18. W. K. Choi and H. M. Lee, “Effect of Ni Layer Thickness and Soldering Time on Intermetallic Compound Formation at the Interface between Molten Sn-3.5Ag and Ni/Cu Substrate,” Journal of Electronic Materials, Vol. 28, No. 11, 1999, pp. 1251~1255.
19. J. Shen, Y. C. Chan and S. Y. Liu, “Growth Mechanism of Ni3Sn4 in a Sn/Ni Liquid/Solid Interfacial Reaction,” Acta Materialia, Vol. 57, 2009, pp. 5196~5206.
20. G. A. Walker, P. W. Dehaven and C. C. Goldsmith, “Kinetics of Intermetallic Formation During Soldering of Chips to Substrates,” Proceedings of 34th Electronic Components and Technology Conference, New Orleans, LA, May 14–16, 1984, pp. 125〜128.
21. S. K. Kang, R. S. Rai and S. Purushothaman, “Interfacial Reactions During Soldering with Lead-Tin Eutectic and Lead (Pb)-Free, Tin-Rich Solders,” Journal of Electronic Materials, Vol. 25, No. 7, 1996, pp. 1113〜1120.
22. A. Sharif, Y. C. Chan, M. N. Islam and M. J. Rizvi, “Dissolution of Electroless Ni Metallization by Lead-Free Solder Alloys,” Journal of Alloys and Compounds, Vol. 388, 2005, pp. 75〜82.
23. H. B. Kang, J. W. Lee, J. H. Bae, M. H. Park, J. W. Yoon, S. B. Jung, J. S. Ju and C. W. Yang, “Initial Interfacial Reaction Layers Formed in Sn-3.5Ag Solder/Electroless Ni-P Plated Cu Substrate System,”
Journal of Materials Research, Vol. 23, No. 8, 2008, pp. 2195〜2201.
24. J. W. Jang, D. R. Frear, T. Y. Lee and K. N. Tu, “Morphology of Interfacial Reaction between Lead-Free Solders and Electroless Ni-P Under Bump Metallization,” Journal of Applied Physics, Vol. 88, No. 11, 2000, pp. 6359〜6363.
25. C. Y. Lin, C. C. Jao, C. Lee and Y. W. Yen, “The Effect of Non-Reactive Alloying Elements on the Growth Kinetics of the Intermetallic Compound between Liquid Sn-Based Eutectic Solders and Ni Substrates,” Journal of Alloys and Compounds, Vol. 440, 2007, pp. 333〜340.
26. G. Ghosh, “Coarsening Kinetics of Ni3Sn4 Scallops during
Interfacial Reaction between Liquid Eutectic Solders and Cu/Ni/Pd Metallization,” Journal of Applied Physics, Vol. 88, No. 11, 2000, pp. 6887〜6896.
27. P. G. Kim, J. W. Jang, T. Y. Lee and K. N. Tu, “Interfacial Reaction and Wetting Behavior in Eutectic SnPb Solder on Ni/Ti Thin Films and Ni Foils,” Journal of Applied Physics, Vol. 86, No. 12, 1999, pp. 6746〜6751.
28. J. Wang, H. S. Liu, L. B. Liu and Z. P. Jin, “Interfacial Reaction between Sn-Bi Alloy and Ni Substrate,” Journal of Electronic Materials, Vol. 35, No. 10, 2006, pp. 1842〜1847.
29. J. F. Li, S. H. Mannan, M. P. Clode, K. Chen, D. C. Whalley, C. Liu and D. A. Hutt, “Comparison of Interfacial Reactions of Ni and Ni-P in Extended Contact with Liquid Sn-Bi-Based Solders,” Acta Materialia, Vol. 55, 2007, pp. 737〜752.
30. M. Oh, Doctoral Dissertation, Lehigh University, 1994.
31. S. Bader, W. Gust and H. Hieber, “Rapid Formation of Intermetallic Compounds by Interdiffusion in the Cu-Sn and Ni-Sn Systems,” Acta Metallurgica et Materialia, Vol. 43, No. 1, 1995, pp. 329〜337.
32. H. F. Hsu and S. W. Chen, “Phase Equilibria of the Sn-Ag-Ni Ternary System and Interfacial Reactions at the Sn-Ag/Ni joints,” Acta Materialia, Vol. 52, 2004, pp. 2541〜2547.
33. D. Gur and M. Bamberger, “Reactive Isothermal Solidification in the Ni-Sn System,” Acta Materialia, Vol. 46, No. 14, 1998, pp. 4917〜4923.
34. H. B. Kang, J. H. Bae, J. W. Yoon, S. B. Jung, J. Park and C. W. Yang, “Microstructure of Interfacial Reaction Layer in Sn-Ag-Cu/Electroless Ni(P) Solder Joint,” Journal of Materials Science, Vol. 22, 2011, pp. 1308〜1312.
35. D. Q. Yu, C. M. L. Wu, D. P. He, N. Zhao, L. Wang and J. K. L. Lai, “Effects of Cu Contents in Sn-Cu Solder on the Composition and Morphology of Intermetallic Compounds at a Solder/Ni Interface,” Journal of Materials Research, Vol. 20, No. 8, 2005, pp. 2205〜2212.
36. C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, “Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni,” Journal of Electronic Materials, Vol. 31, No. 6, 2002, pp. 584〜590.
37. W. T. Chen, C. E. Ho and C. R. Kao, “Effect of Cu Concentration on the Interfacial Reactions between Ni and Sn-Cu Solders,” Journal of Materials Research, Vol. 17, No. 2, 2002, pp. 263〜266.
38. J. W. Yoon and S. B. Jung, “Interfacial Reactions between Sn–0.4Cu Solder and Cu Substrate with or without ENIG Plating Layer during Reflow Reaction,” Journal of Alloys and Compounds, Vol. 396, 2005, pp. 122〜127.
39. W. C. Luo, C. E. Ho, J. Y. Tsai, Y. L. Lin and C. R. Kao, “Solid-State Reactions between Ni and Sn–Ag–Cu Solders with Different Cu Concentrations,” Materials Science and Engineering A, Vol. 396, 2005, pp. 385〜391.
40. Y. D. Jeon, K. W. Paik, A. Ostmann and H. Reichl, “Effects of Cu Contents in Pb-Free Solder Alloys on Interfacial Reactions and Bump Reliability of Pb-Free Solder Bumps on Electroless Ni-P Under-Bump Metallurgy,” Journal of Electronic Materials, Vol. 34, No. 1, 2005, pp. 80〜90.
41. S. T. Kao and J. G. Duh, “Interfacial Reactions and Compound Formation of Sn-Ag-Cu Solders by Mechanical Alloying on Electroless Ni-P/Cu Under Bump Metallization,” Journal of Electronic Materials, Vol. 34, No. 8, 2005, pp. 1129〜1134.
42. K. Zeng and K. N. Tu, “Six Cases of Reliability Study of Pb-Free Solder Joints in Electronic Packaging Technology,” Materials Science and Engineering R, Vol. 38, 2002, pp. 55~105.
43. C. E. Ho, S. C. Yang and C. R. Kao, “Interfacial Reaction Issues for Lead-Free Electronic Solders,” Journal of Materials Science-Materials in Electronics, Vol. 18, 2007, pp. 155〜174.
44. Y. D. Jeon, S. Nieland, A. Ostmann, H. Reichl and K. W. Paik, “A Study on Interfacial Reactions between Electroless Ni-P Under Bump Metallization and 95.5Sn-4.0Ag-0.5Cu Alloy,” Journal of Electronic Materials, Vol. 32, No. 6, 2003, pp. 548〜557.
45. H. B. Kang, J. H. Bae, J. W. Lee, M. H. Park, J. W. Yoon, S. B. Jung and C. W. Yang, “Characterization of Interfacial Reaction Layers Formed Between Sn-3.5Ag Solder and Electroless Ni-Immersion Au-Plated Cu Substrates,” Journal of Electronic Materials, Vol. 37, No. 1, 2008, pp. 84〜89.
46. H. B. Kang, J. H. Bae, J. W. Yoon, S. B. Jung, J. Park and C. W. Yang, “In Situ TEM Characterization of Interfacial Reaction in Sn–3.5Ag/Electroless Ni(P) Solder Joint,” Scripta Materialia, Vol. 64, 2011, pp. 597〜600.
47. C. H. Yu and K. L. Lin, “The Atomic-Scale Studies of the Behavior of the Crystal Dissolution in a Molten Metal,” Chemical Physics Letters, Vol. 418, 2006, pp. 433〜436.
48. C. C. Pan, C. H. Yu and K. L. Lin, “The Amorphous Origin and the Nucleation of Intermetallic Compounds Formed at the Interface during the Soldering of Sn–3.0Ag–0.5Cu on a Cu Substrate,” Applied Physics Letters, Vol. 93, 2008, pp. 061912.
49. C. H. Yu and K. L. Lin, “Early Dissolution Behavior of Copper in a Molten Sn-Zn-Ag Solder,” Journal of Materials Research, Vol. 20, No. 3, 2005, pp. 666〜671.
50. C. H. Yu and K. L. Lin, “Early Stage Soldering Reaction and Interfacial Microstructure Formed between Molten Sn-Zn-Ag Solder and Cu Substrate,” Journal of Materials Research, Vol. 20, No. 5, 2005, pp. 1242〜1249.
51. C. C. Pan and K. L. Lin, “The Interfacial Amorphous Double Layer and the Homogeneous Nucleation in Reflow of a Sn-Zn Solder on Cu Substrate,” Journal of Applied Physics, Vol. 109, 2011, pp. 103513.
52. F. Ochoa, J. J. Williams and N. Chawla, “Effects of Cooling Rate on the Microstructure and Tensile Behavior of a Sn-3.5wt.%Ag Solder,” Journal of Electronic Materials, Vol. 32, No. 12, 2003, pp. 1414〜1420.
53. F. Ochoa, X. Deng and N. Chawla, “Effects of Cooling Rate on Creep Behavior of a Sn-3.5Ag Alloy,” Journal of Electronic Materials, Vol. 33, No. 12, 2004, pp. 1596〜1607.
54. M. Kerr and N. Chawla, “Creep Deformation Behavior of Sn–3.5Ag Solder/Cu Couple at Small Length Scales,” Acta Materialia, Vol. 52, 2004, pp. 4527〜4535.
55. K. Y. Lee and M. Li, “Interfacial Microstructure Evolution in Pb-Free Solder Systems,” Journal of Electronic Materials, Vol. 32, No. 8, 2003, pp. 906〜912.
56. Z. Chen, A. Kumar and M. Mona, “Effect of Phosphorus Content on Cu/Ni-P/Sn-3.5Ag Solder Joint Strength after Multiple Reflows,” Journal of Electronic Materials, Vol. 35, No. 12, 2006, pp. 2126〜2134.
57. JCPDS-ICDD 2002, 1994, card number: 040850.
58. JCPDS-ICDD 2002, 1994, card number: 650297.
59. POWDER DIFFRACTION FILE, Sets 25 to 26, Inorganic Volume, published by the JCPDS, 1973, card number: 26-1289.
60. A. Kumar, Z. Chen, S. G. Mhaisalkar, C. C. Wong, P. S. Teo and V. Kripesh, “Effect of Ni–P Thickness on Solid-State Interfacial Reactions between Sn–3.5Ag Solder and Electroless Ni–P Metallization on Cu Substrate,” Thin Solid Films, Vol. 504, 2006, pp. 410〜415.
61. C. M. Liu, C. E. Ho, W. T. Chen and C. R. Kao, “Reflow Soldering and Isothermal Solid-State Aging of Sn-Ag Eutectic Solder on Au/Ni Surface Finish,” Journal of Electronic Materials, Vol. 30, No. 9, 2001, pp. 1152〜1156.
62. H. Y. Chen and C. Chen, “Kinetic Study of the Intermetallic Compound Formation between Eutectic Sn-3.5Ag Alloys and Electroplated Ni Metallization in Flip-Chip Solder Joints,” Journal of Materials Research, Vol. 27, No. 8, 2012, pp. 1169〜1177.
63. T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., edited by H. Okamoto, P. R. Subramanian, and L. Kacprzak (ASM International, Materials Park, OH, 1990).
64. H. P. Rooksby, “An X-Ray Study of Tin-Nickel Electrodeposits,” Journal of the Electrodepositors' Technical Society, Vol. 27, 1951, pp. 153〜160.
65. C. C. Lo, “Structure of Electrodeposited Equiatomic Tin-Nickel Alloy,” Journal of Applied Physics, Vol. 51, No. 4, 1980, pp. 2007〜2013.
66. M. Antler, “Contact Resistance of Tin-Nickel Alloy Electrodeposits,” Journal of the Electrochemical Society, Vol. 125, No. 3, 1978, pp. 420〜423.
67. J. E. Bennett and H. G. Tompkins, “Investigations of an
Electrodeposited Tin-Nickel Alloy,” Journal of The Electrochemical Society, Vol. 123, No. 7, 1976, pp. 999〜1003.
68. J. A. Augis and J. E. Bennett, “Sputter Deposition of a Metastable Equiatomic Tin-Nickel Alloy,” Journal of The Electrochemical Society, Vol. 124, No. 9, 1977, pp. 1455〜1458.
69. B. E. Wynne, J. W. Edington and G. P. Rothwell, “The
Transformation on Annealing of the Metastable Electrodeposit, NiSnx, to Its Equilibrium Phases,” Metallurgical and Materials Transactions B, Vol. 3, No. 1, 1972, pp. 301〜305.
70. J. A. Augis and J. E. Bennett, “Kinetics of the Transformation of Metastable Tin-Nickel Deposits,” Journal of The Electrochemical Society, Vol. 125, No. 2, 1978, pp. 330〜334.
71. J. A. Augis and J. E. Bennett, “Kinetics of the Transformation of Metastable Tin-Nickel Deposits,” Journal of The Electrochemical Society, Vol. 125, No. 2, 1978, pp. 335〜339.
72. M. Clarke and P. K. Dutta, “The Heat of Formation of the
Single-Phase NiSn Electrodeposit,” Journal of Physics D: Applied Physics, Vol. 4, 1971, pp. 1652〜1656.
73. G. Ghosh, “First-Principles Calculation of Phase Stability and Cohesive Properties of Ni-Sn Intermetallics,” Metallurgical and Materials Transactions A, Vol. 40A, 2009, pp. 4〜23.
74. S. A. Belyakov and C. M. Gourlay, “NiSn4 Formation in As-Soldered Ni-Sn and ENIG-Sn Couples,” Journal of Electronic Materials, Vol. 41, No. 12, 2012, pp. 3331〜3341.
75. C. M. Chen and S. W. Chen, “Electromigration Effects upon the Low-Temperature Sn/Ni Interfacial Reactions,” Journal of Materials Research, Vol. 18, No. 6, 2003, pp. 1293〜1296.
76. W. J. Boettinger, M. D. Vaudin, M. E. Williams, L. A. Bendersky and W. R. Wagner, “Electron Backscattered Diffraction and Energy Dispersive X-ray Spectroscopy Study of the Phase NiSn4,” Journal of Electronic Materials, Vol. 32, No. 6, 2003, pp. 511〜515.
77. L. J. Zhang, L. Wang, X. M. Xie and W. Kempe, “An Investigation on Thermal Reliability of Underfilled PBGA Solder Joints,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 4, 2002, pp. 284〜288.
78. C. H. Wang, C. Y. Kuo, H. H. Chen and S. W. Chen, “Effects of Current Density and Temperature on Sn/Ni Interfacial Reactions under Current Stressing,” Intermetallics, Vol. 19, 2011, pp. 75〜80.
79. S. A. Belyakov and C. M. Gourlay, “NiSn4 Formation during the Solidification of Sn-Ni Alloys,” Intermetallics, Vol. 25, 2012, pp. 48〜59.
80. JCPDS-ICDD 2002, 1994, card number: 451488.
81. C. H. Ma and R. A. Swalin, “A Study of Solute Diffusion in Liquid Tin,” Acta Metallurgica, Vol. 8, 1960, pp. 388〜395.
82. K. N. Tu, Solder joint technology: materials, properties, and reliability, Springer, ISBN 978-0-387-38890-8, 2007, 368 pages.
83. A. Sharif, M. N. Islam and Y. C. Chan, “Interfacial Reactions of BGA Sn-3.5%Ag-0.5%Cu and Sn-3.5%Ag Solders during High-Temperature Aging with Ni/Au Metallization,” Materials Science and Engineering B, Vol. 113, 2004, pp. 184〜189.
84. P. Oberndorff, Doctoral Dissertation, Technical University of Eindhoven, 2001.
85. C. N. Liao and C. T. Wei, “Effect of Intermetallic Compound Formation on Electrical Properties of Cu/Sn Interface during Thermal Treatment,” Journal of Electronic Materials, Vol. 33, No. 10, 2004, pp. 1137〜1143.
86. Z. M. Sun, D. C. Pan, X. W. Lei and J. G. Mao, “Sm2NiSn4: The Intermediate Structure Type between ZrSi2 and CeNiSi2,” Journal of Solid State Chemistry, Vol. 179, 2006, pp. 3378〜3384.
87. T. D. de la Rubia and G. Gilmer, “Cluster Nucleation: Watching Nanoclusters Nucleate,” Nature Materials, Vol. 1, 2002, pp. 89〜90.
88. U. Kaiser, D. A. Muller, J. L. Grazul, A. Chuvilin and M. Kawasaki, “Direct Observation of Defect-Mediated Cluster Nucleation,” Nature Materials, Vol. 1, 2002, pp. 102〜105.
89. W. K. Luo, H. W. Sheng, F. M. Alamgir, J. M. Bai, J. H. He and E. Ma, “Icosahedral Short-Range Order in Amorphous Alloys,” Physical Review Letters, Vol. 92, 2004, pp. 145502-1〜145502-4.
90. B. S. Murty, D. H. Ping and K. Hono, “Nanoquasicrystallization of Binary Zr-Pd Metallic Glasses,” Applied Physics Letters, Vol. 77, No. 8, 2000, pp. 1102〜1104.
91. H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai and E. Ma, “Atomic Packing and Short-to-Medium-Range Order in Metallic Glasses,” Nature, Vol. 439, 2006, pp. 419〜425.
92. X. F. Zhang and R. Wang, “Short-Range Order in Nanoscale
Amorphous Intergranular Films in Liquid-Phase Sintered Silicon Carbide,” Applied Physics Letters, Vol. 89, 2006, pp. 211902-1〜211902-3.
93. S. Hata, S. Matsumura, N. Kuwano, K. Oki and D. Shindo, “Short Range Order in Ni4Mo and Its High Resolution Electron Microscope Images,” Acta Materialia, Vol. 46, No. 14, 1998, pp. 4955〜4961.
94. D. A. Porter, K. E. Easterling and M. Y. Sherif, Phase
Transformations in Metals and Alloys, Third Edition, Taylor ﹠ Francis Group, ISBN 978-1-4200-6210-6, 2008, pp. 181〜192.
95. Robert E. Reed-Hill, Physical Metallurgy Principles, Third Edition, PWS Publishing Company, ISBN 0-534-92173-6, 1991, pp. 479〜498.
96. D. B. Migas, M. Iannuzzi, L. Miglio, F. L. Via and M. G. Grimaldi, “Estimation of the Critical Radius for the Nucleation of the C54 Phase in C49 TiSi2:Role of the Difference in Density,” Materials Research Society Symposium Proceedings, Vol. 580, 2000, pp. 129〜134.
97. Z. Ma and L. H. Allen, “Kinetic Mechanisms of the C49-to-C54 Polymorphic Transformation in Titanium Disilicide Thin Films: A Microstructure-Scaled Nucleation-Mode Transition,” Physical Review B, Vol. 49, No. 19, 1994, pp. 13501〜13511.
98. S. Privitera, F. La Via, C. Spinella, S. Quilici, A. Borghesi, F. Meinardi, M. G. Grimaldi and E. Rimini, “Nucleation and Growth of C54 Grains into C49 TiSi2 Thin Films Monitored by Micro-Raman Imaging,” Journal of Applied Physics, Vol. 88, No. 12, 2000, pp. 7013〜7019.
99. M. S. Alessandrino, S. Privitera, M. G. Grimaldi, C. Bongiorno, S. Pannitteri and F. La Via, “C49-C54 Phase Transition in Nanometric Titanium Disilicide Grains,”Journal of Applied Physics, Vol. 95, No. 4, 2004, pp. 1977〜1985.
100. S. Y. Lin, “Vibrational Local Modes of a-SiO2:H and Variation of Local Modes in Different Local Environments,” Journal of Applied Physics, Vol. 82, No. 12, 1997, pp. 5976〜5982.
101.R. G. Hennig, P. A. Fedders and A. E. Carlsson, “Electronic Structure of Dangling Bonds in Amorphous Silicon Studied via a Density-Matrix Functional Method,” Physical Review B, Vol. 66, 2002, pp. 195213-1〜195213-6.