簡易檢索 / 詳目顯示

研究生: 曾子彝
Tseng, Tzu-I
論文名稱: 時空守恆法在超音速流場之發展與應用
The Development and Application of the Space-Time Conservation Element and Solution Element Method for Supersonic Flows
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 136
中文關鍵詞: 震波時空守恆法適應性網格
外文關鍵詞: Shock Waves, Adaptive Grids, CE/SE Method
相關次數: 點閱:72下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文的研究目的主要在於時空守恆法的發展,並應用於超音速流場中震波反射與繞射現象之探討。本文主要的研究重點分為三項,茲說明如下:

      首先,原時空守恆法(CE/SE method)在避免傳統數值方法的限制下,建構在固定及等間格網格上以用來求解非定常守恆定律。此外,雖其架構在數學上極為簡單,但其適用性及精確性極高。本文將對一維原時空守恆法改良成一移動網格時空守恆法,改良後之方法不但保留了原方法之精神外,更在流場變化較大處(如:震波處)細化網格,不僅提升了該處的解析度且提升了整體的計算效率。

      其次,本文應用時空守恆法來討論穩泰超音速流場下游條件對強馬赫反射結構及馬赫莖高度之影響。當馬赫數為2.84結果中顯示,馬赫莖高度隨流場之入口馬赫數、入射震波波角及楔形塊頂點到對稱軸間之距離之不同而改變。但流場下游條件,如:長度參數(R)及楔形塊頂點外角角度,將不會影響超音速定常流場中之馬赫莖高度或馬赫反射結構。

      最後,本文以尤拉算子及層流模式之奈維爾-史托克算子分別計算在不同入射震波強度及繞射角度下,震波繞射結構及反射波與渦漩結構間交互作用時流場渦量之變化。在尤拉算子模擬中,震波繞射結構在打到下板發生震波反射之前,流場結構具有自生相似性;而在奈維爾-史托克算子中,流場結構除邊界層成長外,流場結構幾乎呈現自生相似。然而無論採用哪一算子,在滑移線上並無小渦漩結構形成。在尤拉算子模擬之渦量圖中可看出,流場之渦量主要是由滑移線所產生;而尤拉算子與奈維爾-史托克算子在流場之總環流量對時間之變化率不同,主要是由於邊界層與二次渦漩上之渦量貢獻。而未與下板發生震波反射之前,震波繞射結構中之渦量產生將隨入射震波強度及繞射角度改變。

      The development and application of the Space-Time Conservation Element and Solution Element method in supersonic flows are investigated. This dissertation contains three main parts as organized in the following.

      First, the original space-time CE/SE method has been developed and designed to avoid the limitations of the traditional numerical methods for stationary grid system in solving hyperbolic type conservation equations. Its foundation is mathematically simple that one can build it with a coherent, robust, and accurate numerical framework. In this research, an adaptively moving mesh scheme for solving one-dimensional hyperbolic conservation law is developed. This approach not only maintains the essential features of original CE/SE method but also clusters the mesh space at the locations where large variation in physical quantities exists. Computation accuracy and efficiency can be improved.

      Secondly, we employ the CE/SE method to determine the influence of downstream flow conditions on Mach stem height in steady supersonic flows. The results indicate that the Mach stem height depends on the incident shock wave angle and the distance between the trailing edge and the symmetry plane. Furthermore, it is shown that the downstream length ratio and the trailing edge angle do not affect the Mach stem height nor the Mach reflection configuration.

      Finally, this study employs the Euler and laminar Navier-Stokes solvers, respectively, to investigate the vorticity production in shock diffraction and the interaction of the reflected shock wave with the main vortex for incident shock waves of various strengths diffracting around convex corners with different angles. The numerical results show that in the Euler simulation, the flow structures are self-similar before they impinge on the bottom wall, and that in the laminar Navier-Stokes simulation, the flow structures are virtually self-similar other than when they are influenced by the boundary layer effect. Neither solver yields evidence of the roll-up of small vortices along the slipstream. The major vorticity production is found to be along the slipstream in Euler solution. Different circulation production rates are observed between the Euler and Navier-Stokes solutions as a result of the vorticity contribution of the boundary layer and the secondary vortex in the latter. The degree of vorticity production is found to be dependent on the strength of the incident shock wave and the diffracting angle when the bottom wall effect is not considered.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 符號說明 VIII 表目錄 XI 圖目錄 XII 第一章、 序論 1 1-1 前言 1 1-2 研究動機 2 1-3 本文架構 2 第二章、 時空守恆法 4 2-1 序論 4 2-2 時空整合 5 2-3 時空守恆法 6 2-3-1 a算則(a Scheme) 8 2-3-2 尤拉算則(Euler Scheme) 9 第三章、 一維適應性時空守恆法 17 3-1 序論 17 3-2 網格重新配置 19 3-3 結果與討論 21 3-3-1 無粘性博格方程式 21 3-3-2 震波管問題 23 3-3-3 活塞問題 26 3-4 結論 27 第四章、 二維時空守恆法之理論及方法 40 4-1 序論 40 4-2 數學模式 40 4-3 時空區間之整合 41 4-4 局部性及整體之物理量守恆 44 4-5 邊界條件 47 4-5-1 入出口邊界條件 48 4-5-2 固體邊界條件 49 4-6 程式驗證 51 第五章、 穩態流場中流場條件對強馬赫反射結構之影響 59 5-1 序論 59 5-2 長度比值及楔形塊頂點到對稱軸截面高度對馬赫反 62 射結構之影響 5-3 楔形塊頂點外角角度對馬赫反射結構之影響 66 5-4 結論 67 第六章、 震波繞射流場中渦量的變化 77 6-1 序論 77 6-2 滑移線上小渦漩結構 79 6-3 震波流場中渦量的變化 81 6-4 反射震波與渦漩間之交互作用對流場中渦量的變化 85 6-5 結論 87 第七章、 總結與建議 107 7-1 總結 107 7-2 建議及展望 108 參考文獻 110 附錄A 117 附錄B 118 附錄C 120 附錄D 132 發表於期刊及研討會之論文 134 自述 136

    [1] Adjerid, S. and Flaherty, J. E., “A Moving FEM with Error Estimation and Refinement for 1-D Time Dependent PDEs,” SIAM J. Numer. Anal., Vol. 21, pp. 778-795, 1986.
    [2] Anderson, D. A., “Adaptive Mesh Schemes Based on Grid Speeds,” AIAA Paper 83-1931, 1983.
    [3] Andrew, B. and White, Jr., “On Selection of Equidistribution Meshes for Two-Point Boundary-Value Problems,” SIAM J. Numer. Anal., Vol. 16, pp. 472-502, 1979.
    [4] Azevedo, D. J. and Liu C. S., “Engineering Approach to the Prediction of Shock Patterns in Bounded High-Speed Flows,” AIAA J., Vol. 31, pp. 83-90, 1993.
    [5] Bazhennova, T., Gvozdeva, L. and Nettleton, M., “Unsteady Interaction of Shock Wave,” Progress in Aerospace Science, Vol. 21, pp. 249-331, 1984.
    [6] Beckett, G., Mackenzie, J. A., Robertson, M. L. and Sloan, D. M., “On the Numerical Solution of One-Dimensional PDEs Using Adaptive Method Based on Equidistribution,” J. Comp. Phys., Vol. 167, pp. 372-392, 2001.
    [7] Berger, M. J. and Colella, P., “Local Adaptive Mesh Refinement for Shock Hydrodynamics,” J. Comput. Phys., Vol. 82, pp. 64-84, 1989.
    [8] Ben-Dor, G. and Takayama, K., “The Phenomena of Shock Wave Reflection – A Review of Unsolved Problems and Future Research Needs,” Shock Waves, Vol. 2, pp. 221-223, 1992.
    [9] Ben-Dor, G., Elperin, T., Li, H., Vasiliev, E., Chpoun, A. and Zeitoun, D., “Dependence of Steady Mach Reflections on the Reflecting-Wedge Trailing-Edge Angle,” AIAA J., Vol. 35, pp. 1780-1782, 1997.
    [10] Budd, C., Huang, W. Z. and Russell, R. D., “Moving Mesh Methods for Problems with Blow-Up,” SIAM J. Sci. Comput., Vol. 17, pp. 305-327, 1996.
    [11] Chang, S. C. and To, W. M., “A New Numerical Framework for Solving Conservation Laws – The Method of Space-Time Conservation Element and Solution Element,” NASA TM 104495, August, 1991.
    [12] Chang, S. C., “The Method of Space-Time Conservation Element and Solution Element – A New Approach for Solving the Navire-Stokes and Euler Equations,” J. Comp. Phys., Vol. 119, pp. 295-324, 1995.
    [13] Chang, S. C., Himansu, A., Loh, C. L., Wang, X. Y., Yu, S. T. and Jorgenson, P. C. E., “Robust and Simple Non-Reflecting Boundary Conditions for the Space-Time Conservation Element and Solution Element Method,” AIAA Paper 97-2077, the 13th AIAA CFD Conference, June 1997, Snowmass, Colorado.
    [14] Chang, S. C., Wang, X. Y. and Chow, C. Y., “The Space-Time Conservation Element and Solution Element Method – A New High Resolution and Genuinely Multi-Dimensional Paradigm for Solving Conservation Laws I. The Two Dimension Time Marching Schemes,” NASA TM 1998-208843, December 1998.
    [15] Chang, S. C., Wang, X. Y. and Chow, C. Y., “The Space-Time Conservation Element and Solution Element Method - A New High-Resolution and Genuinely Multidimensional Paradigm for Solving Conservation Laws,” J. Comput. Phys., Vol. 156, pp. 89-136, 1999.
    [16] Chang, S. C., Wang, X. Y. and To, W. M., “Application of the Space-Time Conservation Element and Solution Element Method to One-Dimensional Convection-Diffusion Prroblems,” J. Comput. Phys., Vol. 165, pp. 189-215, 2000.
    [17] Chang, S. C., Zhang, Z. C., Yu, S. T. and Jorgenson, P. C. E., “A Unified Wall Boundary Treatment for Viscous and Inviscid Flows in the Space-Time CE/SE Method,” Proceedings of the First International Conference on Computational Fluid Dynamics, July, 2000, Kyoto, Japan.
    [18] Chpoun, A. and Leclerc, E., “Experimental Investigation of the Influence of Downstream Flow Conditions on Mach Stem Height,” Shock Waves, Vol. 9, pp. 269-271, 1999.
    [19] Dorif, E. A. and Drury L. O’c., “Simple Adaptive Grids for 1-D Initial Value Problems,” J. Comp. Phys., Vol. 69, pp. 175-195, 1987.
    [20] Evans, R. and Bloor, M., “The Starting Mechansim of Wave-Induced Flow through a Sharp-Edged Orifice,” J. Fluid Mech., Vol. 82, pp. 115-128, 1977.
    [21] Hakkinen, R., Greber, I. and Trilling, L., “The Interaction of an Oblique Shock Wave with a laminar Boundary Layer,” NASA MEMO 2-18-59W, 1959.
    [22] Hillier, R., “Computation of Shock Wave Diffraction at a Ninety Degrees Convex Corner,” Shock Waves, Vol. 1, pp. 89-98, 1991.
    [23] Hindman, R. G. and Spencer, J., “A New Approach to Truly Adaptive Grid Generation,” AIAA Paper 83-0450, 1983.
    [24] Hornung, H. G. and Robinson, M. L., “Transition from Regular to Mach Reflection of Shock Waves. Part 2: The Steady-Flow Criterion,” J. Fluid Mech., Vol. 123, pp. 155-164, 1982.
    [25] Howard, L. and Mathews, D., “On the Vortices Produced in Shock Diffraction,” J. Appli. Phys., Vol. 27, pp. 223-231, 1956.
    [26] Huang, W., Ren, Y. and Russell, R. D., “Moving Mesh Partial Differential Equations (MMPDEs) Based Upon the Equidistribution Principle,” SIAM J. Numer. Anal., Vol. 31, pp. 709-730, 1994.
    [27] Huang, W. Z., Ren, Y. and Russell R. D., “Moving Mesh Method Based on Moving Mesh Partial Differential Equations”, J. Comp. Phys., Vol. 113, pp. 279-290, 1994.
    [28] Kleine, H., Ritzerfeld, E. and Grönig, H., “shock Wave Diffraction at a Ninety Degree Corner,” Computational Fluid Dynamics Journal, Vol. 12, pp. 142-158, 2003.
    [29] Li, h. and Ben-Dor, G., “A Parametric Study of Mach Reflection in Steady Flows,” J. Fluid Mech., Vol. 341, pp. 101-125, 1997.
    [31] Li, S., Petzold, L. and Ren, Y., “Stability of Moving Mesh Systems of Partial Differential Equations,” SIAM J. Sci. Comput., Vol. 20, pp. 719-738, 1998.
    [31] Liepmann, H. W. and Roshko, A., “Elements of Gasdynamics,” Wiley, New York, 1957.
    [32] Loh, C. Y., Hultgren, L. S., Chang, S. C. and Jorgenson, P. C. E., “Vortex Dynamics Simulation in Aeroacoustics by the Space-Time Conservation Element and Solution Element Method,” AIAA Paper 99-0359, the 37th AIAA Aerospace Sciences Meeting, January, 1999, Reno, Nevada.
    [33] Matso, K., Aoki, T. and Kashimura, H., “Diffraction of a Shock Wave Around a Convex Corner,” Proceeding of the 17th International Symposium on Shock Waves and Shock Tubes, pp. 252-257, 1990.
    [34] Neumann, J. von, “Oblique Reflection of Shock,” Explos. Res. Rep. 12, Navy Dept., Bureau of Ordinance, Washington, DC, 1943.
    [35] Neumann, J. von, “Refraction, Intersection and Reflection of Shock Waves,” NAVORD Rep. 203-45, Navy Dept., Bureau of Ordinance, Washington, DC, 1943.
    [36] Ren Y. and Russell R. D., ”Moving Mesh Techniques Based Upon Equidistribution, and Their Stability”, SIAM J. Sci. Statist. Comput., Vol. 13, pp. 1265-1286, 1992.
    [37] Rott, N., “Diffraction of a Weak Shock with Vortex Generation,” J. Fluid Mech., Vol. 1, pp. 111-128, 1956.
    [38] Schotz, J., Levy, A., Ben-Dor, G. and Igra, O., “Analytical Prediction of the Wave Configuration Size in Steady Flow Mach Reflections,” Shock Waves, Vol. 7, pp. 363-372, 1997.
    [39] Semper, B. and Liao, G., “A Moving Grid Finite-Element Method Using Grid Deformation,” Numer. Meth. PDEs., Vol. 11, pp. 603-615, 1995.
    [40] Skew, B. W., “The Shape of a Diffracting Shock Wave,” J. Fluid Mech., Vol. 29, pp. 297-304, 1967.
    [41] Skew, B. W., “The Perturbed Region Behind a Diffraction Shock Wave,” J. Fluid Mech., Vol. 29, pp. 705-720, 1967.
    [42] Sod, G. A., “A Survey of Several Finite Difference Methods for System of Nonlinear Hyperbolic Conservation Laws,” J. Comp. Phys., Vol. 27, pp. 1-31, 1978.
    [43] Stockie, J. H., Mackenzie, J. A. and Russell, R. D., “A Moving Mesh Method for One-Dimensional Hyperbolic Conservation Laws,” SIAM J. Sci. Comput., Vol. 22, pp. 1791-1813, 2001
    [44] Sun, M. and Takayama, K., “The Formation of a Secondary Shock Wave behind a Shock Wave Diffracting at a Convex Corner,” Shock Waves, Vol. 7, pp. 287-295, 1997.
    [45] Sun, M. and Takayama, K., “A Note on Numerical Simulation of Vortical Structure in Shock Diffraction,” Shock Waves, Vol. 13, pp. 25-32, 2003.
    [46] Sun, M. and Takayama, K., “Vorticity Production in Shock Diffraction,” J. Fluid Mech., Vol. 478, pp. 237-256, 2003.
    [47] Takayama, k. and Inoue, O., “Shock wave Diffraction over a 90 Degree Sharp Corner,” Shock Waves, Vol. 1, pp. 301-312, 1991.
    [48] Takayama, K. and Jiang, Z., “Shock Wave Reflection over Wedges: A Benchmark Test for CFD and Experiments,” Shock Waves, Vol. 7, pp. 191-203, 1997.
    [49] Vuillon, J., Zeitoun, D. and Ben-Dor, G., “Reconsideration of Oblique Shock Wave Reflections in Steady flows. Part 2: Numerical Investigation,” J. Fluid Mech., Vol. 301, pp. 37-50, 1995.
    [50] Vuillon, J., Zeitoun, D. and Ben-Dor, G., “Numerical Investigation of Shock Wave Reflections in Steady Flows,” AIAA J., Vol. 34, pp. 1167-1173, 1996.
    [51] Wang, X. Y., Chow, C. Y. and Chang, S. C., “The Space-Time Conservation Element and Solution Element Method – A New High Resolution and Genuinely Multi-Dimensional paradigm for Solving Conservation Laws II. Numerical Simulation of Shock Waves and Contact Discontinuities,” NASA TM 1998-208844, December 1998.
    [52] Wang, X. Y. and Chang, S. C. , “A 2D Non-Splitting Unstructureed Triangular Mesh Euler Solver Based on the Space-Time Conservation Element and Solution Element Method,” Computational Fluid Dynamics Journal, Vol. 8, pp. 309-325, 1999.
    [53] Wang, X. Y. and Chang S. C., ”A 3-D Structure/Unstructured Euler Solver based on the Space-Time Conservation Element and Solution Element Method,” 14th AIAA CFD Conference, June 1999, Norfolk, Virginia.
    [54] Wang, X. Y., Chang, S. C. and Jorgenson , P. C. E. , “Accuracy Study of the Space- Time CE/SE Method for Computational Aeroacoustics Problems Involving Shock Waves,” AIAA Paper 2000-0474, presented at the 38th AIAA Aerospace Sciences Meeting, January 2000, Reno, Nevada.
    [55] Wang, X. Y., Chan, C. L. and Liu, Y., “The Space-Time CE/SE Method for Solving Maxwell's Equations in Time-Domain,” the 2002 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, June 2002, San Antonio, Texas.
    [56] Whitham, G. B., “A New to Problems of Shock Dynamics. Part 1: Two- Dimensional Problems,” J. Fluid Mech., Vol. 2, pp. 145-171, 1957.
    [57] Whitham, G. B., “A New to Problems of Shock Dynamics. Part 2: Three- Dimensional Problems,” J. Fluid Mech., Vol. 5, pp. 369-386, 1959.
    [58] Yang, J., “Experimental and Theoretical Study of Weak Shock Wave,” Ph. D. Thesis, Institute of Fluid Science, Tohoku University, Japan, 1995.
    [59] Yu, S. T. and Chang, S. C., “Applications of the Space-Time Conservation Element / Solution Element Method to Unsteady Chemically Reactive Flows,” AIAA Paper 97-2099, the 13th AIAA CFD Conference, June 1997, Snowmass, Colorado.
    [60] Zhang, Z. C., Yu, S. T., Wang, X. Y., Chang, S. C., Himansu, A. and Jorgenson, P. C. E., “The CESE Method for Navier-Stokes Equations Using Unstructured Meshes for Flows at All Speeds,” AIAA Paper 2000-0393, the 38th AIAA Aerospace Sciences Meeting, January, 2000, Reno, Nevada.
    [61] Zhang, Z. C., Yu, S. T. and Chang, S. C., “A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three- Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes,” J. Comp. Phys., Vol. 175, pp. 168-199, 2002.

    下載圖示 校內:2006-07-27公開
    校外:2008-07-27公開
    QR CODE