| 研究生: |
黃靖婷 Huang, Jing-ting |
|---|---|
| 論文名稱: |
探討製作預填分離膠質之DNA分析晶片 Gel preloaded microchips for DNA analysis |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | DNA分離 、race tracking 、微流體晶片 、交聯凝膠 、凝膠膨脹率 |
| 外文關鍵詞: | the swelling ratio, race tracking, DNA separation, cross-linked gel, microfluidic chips |
| 相關次數: | 點閱:134 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出以預填凝膠的方式製作DNA分離晶片,以方便使用者進行DNA分離實驗。我們使用UV光聚合凝膠 (photopolymerized cross-linked gels) ,曝光後烘乾,並使用PMMA film,以真空加熱的方式完成晶片的封裝。由實驗結果發現凝膠曝光烘乾後可以均勻分布於微管道內。由於凝膠在微管道內膨脹之表徵膨脹率比自由膨脹率大,因此利用此特性及製作晶片時PMMA film下陷的結果,所得到的預填凝膠DNA分離晶片不僅可避免race tracking的現象產生,同時膨脹後的凝膠結構及分布也與一般製作方法所得的晶片相似。使用預填凝膠的DNA晶片進行DNA電泳分離,除了得到與文獻相似的結果外,也達到提供使用者在進行DNA分析前,只需填充緩衝液,而不需繁瑣的前置準備工作及設備的目的。
In this study, we proposed and demonstrated fabrication of the gel preloaded microchips for DNA analysis. The photocurable polyacrylamide gel solution was first pre-loaded inside the open microchannels, followed by UV curing and drying. The microchannels with dried gel were covered with a PMMA film and sealed via vacuum and heating. The results showed that distribution of the dried gel in microchannels was uniform, and the apparent swelling ratio of the gel in the microwell was larger than its free swelling ratio. Furthermore, there is no race tracking observed in the microchannel and the pore size distribution inside the microchannel is similar to that obtained by using common fabrication technique. DNA separation was also reasonably well. This fabrication technique yields excellent packaging of the polymer based DNA separation microchips ready for use with fast loading capability and increased portability.
1. 李建武, 生物化學實驗原理和方法. 藝軒圖書出版社, 114-146 (1999).
2. Schwartz, H. & Guttman, A. Separation of DNA by Capillary Electrophoresis. Beckman Instruments, Inc.,2500 Harbor Blvd., Fullerton. (1995)
3. 宋旺洲, 李國賓, 廖寶琦 & 陳淑慧 電泳晶片之簡介. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) 59, 423-428 (2001).
4. 張煥宗, 高通量電泳分析. 自然科學簡訊 13, 44-48 (2001).
5. Han, F., Huynh, B.H., Ma, Y. & Lin, B. High-Efficiency DNA Separation by Capillary Electrophoresis in a Polymer Solution with Ultraslow Viscosity. Anal. Chem. 71, 2385-2389 (1999).
6. Heller, C. Principles of DNA Separation with Capillary Electrophoresis. Electrophoresis 22, 629-643 (2001).
7. Brahmasndra, S.N., Ugaz, V.M., Burke, D.T., Mastrangelo, C.H. & Burns, M.A. Electrophoresis in Microfabricated Devices Using Photopolymerized Polyacrylamide Gels and Electrode-Defined Sample Injection. Electrophoresis 22, 300-311 (2001).
8. Hietpas, P.B., Bullard, K.M., Gutman, D.A. & Ewing, A.G. Ultrathin Slab Gel Separations of DNA Using a Single Capillary Sample Introduction System. Anal. Chem. 69, 2292-2298 (1997).
9. Jacobson, S.C., Hergenroder, R., Koutny, L.B., Warmack, R.J. & Ramsey, J.M. Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices. Anal. Chem. 66, 1107-1113 (1994).
10. Slater, G.W., Gauthier, M.G., Mercier, J.F., Kenward M., McCormick, L.C. & Tessie, F. The Theory of DNA Separation by Capillary Electrophoresis. Current Opinion in Biotechnology 14, 58-64 (2003).
11. Slater, G.W., Gauthier, M.G., Mercier, J.F., Kenward M., McCormick, L.C. & Tessier, F. Theory of DNA Electrophoresis (1999–20021/2). Electrophoresis 23, 3791–3816 (2002).
12. Kan, C.W. & Barron, A.E. A DNA Sieving Matrix with Thermally Tunable Mesh Size. Electrophoresis 24, 55-62 (2003).
13. Barron, A.E., Blanch, H.W. & Soane, D.S. A Transient Entanglement Coupling Mechanism for DNA Separation by Capillary Electrophoresis in Ultradilute Polymer Solutions. Electrophoresis 15, 597-615 (1994).
14. Geoun, M.B., Choi, K.S., Lee, Y.-I. & Kim, Y. Characterization of Single-Stranded DNA Separation by Capillary Gel Electrophoresis. Microchemical Journal 72, 305–313 (2002).
15. Wang, J. & Ugaz, V.M. Using in situ Rheology to Characterize the Microstructure in Photopolymerized Polyacrylamide Gels for DNA Electrophoresis. Electrophoresis 27, 3349-3358 (2006).
16. Tabuchi, M. Ueda, M., Kaji, M., Yamasaki, Y., Nagasaki, Y., Yoshikawa, K., Kataoka, K & Baba Y. Nanospheres for DNA Separation Chips. Nature Biotechnology 22, 337-340 (2004).
17. Kim, Y. & Morris, M.D. Rapid Pulsed Field Capillary Electrophoretic Separation of Megabase Nucleic Acids. Anal. Chem. 67, 784-786 (1995).
18. Huang, M.F., Kuo, Y.C., Huang, C.C. & Chang, H.T. Separation of Long Double-Stranded DNA by Nanoparticle-Filled Capillary Electrophoresis. Anal. Chem. 76, 192-196 (2004).
19. Lin, Y.W., Huang, M.F. & Chang, H.T. Nanomaterials and Chip-Based Nanostructures for Capillary Electrophoretic Separations of DNA. Electrophoresis 26, 320-330 (2005).
20. Mayer, P., Slater, G.W. & Drouint, G. Theory of DNA Sequencing Using Free-Solution Electrophoresis of Protein-DNA Complexes. Anal. Chem. 66, 1777-1780 (1994).
21. Ren, H. Karger, A.E., Oaks, F., Menchen, S., Slater, G.W. & Droin, G. Separating DNA Sequencing Fragments without a Sieving Matrix. Electrophoresis 20, 2501-2509 (1999).
22. Long, D. & Ajdari, A. Electrophoretic Mobility of Composite Objects in Free Solution: Application to DNA Separation. Electrophoresis 17, 1161-1166 (1996).
23. Vreeland, W.N., Meagher, R.J. & Barron, A.E. Multiplexed, High-Throughput Genotyping by Single-Base Extension and End-Labeled Free-Solution Electrophoresis. Anal. Chem. 74, 4328-4333 (2002).
24. Won, J.I., Meagher, R.J. & Barron, A.E. Protein Polymer Drag-Tags for DNA Separations by End-Labeled Free-Solution Electrophoresis. Electrophoresis 26, 2138-2148 (2005).
25. Doyle, P.S., Bibette, J.r., Bancaud, A. & Viovy, J.-L. Self-Assembled Magnetic Matrices for DNA Separation Chips. Science 295, 2237 (2002).
26. Li, B., Fang, X., Luo, H., Seo, Y.S., Petersen, E., Ji, Y., Rafailovich, M., Sokolov, J., Gersappe, D. & Chu, B. Separation of DNA with Different Configurations on Flat and Nanopatterned Surfaces. Anal. Chem. 78, 4743-4751 (2006).
27. Seo, Y.S., Luo, H., Samuilov, V.A., Rafailovich, M.H., Sokolov, J., Gersappe, D. & Chu, B. DNA Electrophoresis on Nanopatterned Surfaces. NANO LETTERS 4, 659-664 (2004).
28. 李孟駿, Flow-Regulated Dielectrophoreic Manipulation of Submicron particles. 國立成功大學化學工程學系碩士論文 (2006).
29. Lai, S., Cao, X. & Lee, L.J. A Packaging Technique for Polymer Microfluidic Platforms. Anal. Chem. 76, 1175-1183 (2004).
30. Huang, F.C., Liao, C.S. & Lee1, G.B. An Integrated Microfluidic Chip for DNA/RNA Amplification, Electrophoresis Separation and On-Line Optical Detection. Electrophoresis 27, 3297-3305 (2006).
31. Ceylan, D., Ozmen, M.M. & Okay, O. Swelling–Deswelling Kinetics of Ionic Poly(acrylamide) Hydrogels and Cryogels. Wiley InterScience, 319-325 (2005).
32. Plieva, F.M., Karlsson, M., Aguilar, M.R., Gomez, D., Mikhalovskyd, S. & Galaev, L.Y. Pore Structure in Supermacroporous Polyacrylamide Based Cryogels. The Royal Society of Chemistry 1, 303-309 (2005).
33. Furukawa, H. Effect of Varying Preparing-Concentration on the Equilibrium Swelling of Polyacrylamide Gels. Journal of Molecular Structure 554, 11-19 (2000).
34. Patras, G., Qiao, G.G. & Solomon, D.H. Characterization of the Pore Structure of Aqueous Three-Dimensional Polyacrylamide Gels with a Novel Cross-linker. Electrophoresis 21, 3843-3850 (2000).
35. 陳育群, 王長志 & 陳柏台 溫度反應水凝膠收縮比率之製程研究. 中國材料科學學會2004年研討會 (2004).
36. 曾敬, 趙桂貞 & 段紀東, 藥物控制釋放的研究進展. 化學通報 69 (2006).