簡易檢索 / 詳目顯示

研究生: 賴秉豪
Lai, Ping-Hao
論文名稱: 利用烏頭酸酶與泛酸激酶在基改大腸桿菌中提升五胺基酮戊酸產量
Reinforce 5-Aminolevulinic Acid Production Using Aconitase and Pantothenate Kinase in Engineered Escherichia coli
指導教授: 吳意珣
Ng, I-Son
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 88
中文關鍵詞: 五胺基酮戊酸烏頭酸酶泛酸激酶工程化宿主篩選表達水平調控
外文關鍵詞: 5-Aminolevulinic acid, E. coli Nissle 1917, Aconitase, Rhodobacter capsulatus, fed-batch fermentation
相關次數: 點閱:36下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 五胺基酮戊酸 (5-ALA) 是一種內源性非蛋白質氨基酸,因為其多領域的廣泛應用性而受到關注。除了作為農業用藥與畜牧飼料添加劑以外,在癌症治療領域中 5-ALA 是一種前驅藥物用於光動力療法 (PDT) ,同時在近年的 COVID-19 傳染病中展現了其抗病毒活性藥劑的潛力。本研究利用來自莢膜紅桿菌的五胺基酮戊酸合成酶 (ALAS, EC 2.3.1.37) 作為生產 5-ALA 的主要基因,並以兩種途徑:增強三羧酸循環 (TCA cycle) 通量以及增加輔酶A (CoA) 供應,分別使用烏頭酸酶 (AcnA, EC 4.2.1.3) 與泛酸激酶 (CoaA, EC 2.7.1.33) 改善 5-ALA 之生物合成。最後,透過培養基優化、宿主篩選及生物反應器培養策略實現高水平的 5-ALA 生產菌株。
    烏頭酸酶:以來自大腸桿菌 MG1655 與 Nissle 1917 之 AcnA (MGAcnA 與 EcNAcnA) 進行同源基因的比較,並且篩選得到較優異的 EcNAcnA。接著我們以雙質體系統調控不同表達水平的 EcNAcnA 以平衡細胞生長與 5-ALA 生物生產,結果顯示以低拷貝數 p15A ori驅動 EcNAcnA 為最佳的組合。為了減輕多質體合成帶來的能量負擔,設計了 all-in-one 質體並且以不同的培養基組分成功提升了 54% 生物量至 4.271 g/L。更探索在不同的基改菌株中能夠提升 5-ALA 生產量的優異宿主,在基因組上整合 ALAS 的菌株進一步將 5-ALA 產量提升至 8.3 g/L。同時,對菌株進行保種以確保後續培養的穩定性。最終,利用 1 L 批次饋料發酵結合培養基 pH 維持、連續式饋料及溶解氧氣水平的調整,於 27 小時達到了 10.4 g/L 的細胞量與 24.5 g/L 的高水平 5-ALA 產量,生產率為 0.907 g/L/h,產率為 74.8%。
    泛酸激酶:首先利用四種不同表達水平的 CoaA 質體探索對 5-ALA 生產影響,並發現在添加泛酸的條件下以 pUC ori 搭配原生核糖體結合位點 (RBS) 得到 8.72 g/L 的 5-ALA 產量。隨後對泛酸添加的條件進行優化,得到最佳的添加濃度與時間。最後進行 1 L 批次饋料發酵,並嘗試共表達 EcNAcnA 與 CoaA 聯合發酵。
    這項研究利用 EcNAcnA 與 CoaA 各自調控表達水平藉此提升菌株的細胞生長以及 5-ALA 生產量;在 EcNAcnA 的系統透過培養基組分、比較宿主特性,並優化生物反應器的培養策略,建立了能夠抵抗氧化壓力並生產高價值化學品的基改大腸桿菌;在 CoaA 的系統以最佳化泛酸添加的條件,得到具有放大培養潛力的菌株。

    In recent years, 5-aminolevulinic acid (5-ALA) has attracted significant interest due to its roles as a photodynamic prodrug and an antiviral agent. In this study, we present a new approach utilizing aconitase A from E. coli Nissle 1917 (EcNAcnA), renowned for its exceptional activity and conjunction with ALA synthase from Rhodobacter capsulatus (RcALAS) to enhance 5-ALA production in an engineered chassis. Expression of EcNAcnA and RcALAS via dual plasmids led to a 60% increase in 5-ALA yield, reaching up to 6.645 g/L. Diverse 5-ALA production levels were observed with different combinations of promoters and replication origins for both genes. Subsequently, an all-in-one plasmid with a high copy number, designated as RcNN, was introduced into the genomic engineering RcI strain. This resulted in the production of 24.5 g/L 5-ALA with a productivity of 0.907 g/L/h in a bioreactor under pH control and glucose feeding over 27 h. To the best of our knowledge, this is the first study to enhance 5-ALA biosynthesis by applying a superior aconitase variant from E. coli Nissle 1917, which enhances isocitrate production in the TCA cycle and alleviates reactive oxygen species (ROS), thereby promoting 5-ALA accumulation effectively.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 符號 XV 第一章 緒論 1 1.1 前言 1 1.2 研究目的與架構 2 第二章 文獻回顧 4 2.1 五胺基酮戊酸 (5-ALA) 4 2.1.1 五胺基酮戊酸的性質與應用 4 2.1.2 五胺基酮戊酸之合成方法 4 2.2 生物合成五胺基酮戊酸的研究發展 7 2.2.1 透過四碳途徑 (C4 pathway) 生產五胺基酮戊酸 7 2.2.2 透過五碳途徑 (C5 pathway) 生產五胺基酮戊酸 10 2.3 三羧酸循環與輔酶 A 代謝途徑 12 2.3.1 三羧酸循環於大腸桿菌中的代謝作用 12 2.3.2 三羧酸循環中烏頭酸酶的調節功能 14 2.3.3 輔酶 A 合成途徑 14 第三章 實驗材料與方法 16 3.1 藥品與材料 16 3.2 實驗儀器 18 3.3 菌株、質體及引物材料 19 3.4 質體構建 22 3.4.1 質體抽取 (Plasmid DNA extraction) 22 3.4.2 聚合酶酵素連鎖反應 (PCR) 22 3.4.3 DNA 電泳分析與膠體回收 (DNA gel extraction) 23 3.4.4 限制酶酶切 (Digestion of restriction enzyme) 24 3.4.5 勝任細胞製備 (Competent cell preparation) 24 3.4.6 基因接合反應與轉化 (Ligation and transformation) 25 3.4.7 驗證 (Confirmation) 26 3.5 菌株培養與發酵 26 3.5.1 培養基配製 26 3.5.2 菌株的搖瓶培養 27 3.5.3 菌株的發酵培養 28 3.6 分析方法 28 3.6.1 大腸桿菌生長與螢光強度分析 28 3.6.2 細胞乾重測定 29 3.6.3 螢光定量 PCR (qPCR) 分析相對基因表達量 29 3.6.4 定量五胺基酮戊酸 (5-ALA) 濃度 29 3.6.5 代謝物分析 30 3.6.6 蛋白質膠體電泳分析 31 第四章 結果與討論 33 4.1 應用烏頭酸酶 (AcnA) 增強三羧酸循環通量進行 5-ALA 生產 33 4.1.1 評估大腸桿菌 MG1655 及 Nissle 1917 之 AcnA 對 5-ALA 生產的效果 33 4.1.2 調控 EcNAcnA 表達對平衡細胞生長與 5-ALA 合成的影響 35 4.1.3 利用 all-in-one 質體在不同培養基對細胞生長與 5-ALA 合成的影響 37 4.1.4 應用不同宿主對生產 5-ALA 的影響 39 4.1.5 整合分子伴侶蛋白 GroELS對生產 5-ALA 的影響 44 4.1.6 放大與饋料生產 5-ALA 46 4.2 應用泛酸激酶 (CoaA) 增加輔酶 A 進行生產 5-ALA 49 4.2.1 調控 CoaA 表達質體並比較泛酸 (PA) 添加對 5-ALA 生產的影響 49 4.2.2 探討泛酸 (PA) 濃度與添加時間對 5-ALA 生產的影響 53 4.2.3 結合CoaA 與 EcNAcnA 對5-ALA 生產的影響 54 第五章 結論與未來展望 56 5.1 結論 56 5.2 未來展望 57 第六章 參考文獻 58 附錄 69

    Åkesson, M., Hagander, P., & Axelsson, J. P. (2001). Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnology and Bioengineering, 73(3), 223-230.
    Anderson, C. P., Shen, M., Eisenstein, R. S., & Leibold, E. A. (2012). Mammalian iron metabolism and its control by iron regulatory proteins. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(9), 1468-1483.
    Ausländer, S., Ausländer, D., & Fussenegger, M. (2017). Synthetic biology—the synthesis of biology. Angewandte Chemie International Edition, 56(23), 6396-6419.
    Beale, S. I. (1970). The biosynthesis of δ-aminolevulinic acid in Chlorella. Plant Physiology, 45(4), 504-506.
    Beale, S. I., Gold, M. H., & Granick, S. (1979). Chemical synthesis of 4, 5-dioxovaleric acid and its nonenzymatic transamination to 5-aminolevulinic acid. Phytochemistry, 18(3), 441-444.
    Begley, T. P., Kinsland, C., & Strauss, E. (2001). The biosynthesis of coenzyme A in bacteria. Vitamins & Hormones, 61, 157-171.
    Beika, M., Harada, Y., Minamikawa, T., Yamaoka, Y., Koizumi, N., Murayama, Y., Konishi, H., Shiozaki, A., Fujiwara, H., & Otsuji, E. (2021). Accumulation of uroporphyrin I in necrotic tissues of squamous cell carcinoma after administration of 5-aminolevulinic acid. International Journal of Molecular Sciences, 22(18), 10121.
    Bozell, J. J., Moens, L., Elliott, D., Wang, Y., Neuenscwander, G., Fitzpatrick, S., Bilski, R., & Jarnefeld, J. (2000). Production of levulinic acid and use as a platform chemical for derived products. Resources, Conservation and Recycling, 28(3-4), 227-239.
    Bunke, A., Zerbe, O., Schmid, H., Burmeister, G., Merkle, H., & Gander, B. (2000). Degradation mechanism and stability of 5‐aminolevulinic acid. Journal of Pharmaceutical Sciences, 89(10), 1335-1341.
    Carvalho, H., & Meneghini, R. (2008). Increased expression and purification of soluble iron-regulatory protein 1 from Escherichia coli co-expressing chaperonins GroES and GroEL. Brazilian Journal of Medical and Biological Research, 41, 270-276.
    Chen, J., Wang, Y., Guo, X., Rao, D., Zhou, W., Zheng, P., Sun, J., & Ma, Y. (2020). Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum. Biotechnology for Biofuels, 13, 1-13.
    Chen, L., Shi, Q., Dong, Q., Du, Y., Peng, Z., Zeng, Q., Lin, Z., Qiu, J., Zhao, Y., & Wang, J. J. (2022). Covalent grafting of 5-aminolevulinic acid onto polylactic acid films and their photodynamic potency in preserving salmon. Journal of Agricultural and Food Chemistry, 71(1), 905-919.
    Chen, X. J., Wang, X., & Butow, R. A. (2007). Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA. Proceedings of the National Academy of Sciences, 104(34), 13738-13743.
    Cooper, S., & Helmstetter, C. E. (1968). Chromosome replication and the division cycle of Escherichia coli Br. Journal of molecular biology, 31(3), 519-540.
    Cui, Z., Jiang, Z., Zhang, J., Zheng, H., Jiang, X., Gong, K., Liang, Q., Wang, Q., & Qi, Q. (2019). Stable and efficient biosynthesis of 5-aminolevulinic acid using plasmid-free Escherichia coli. Journal of Agricultural and Food Chemistry, 67(5), 1478-1483.
    Cunningham, L., Gruer, M. J., & Guest, J. R. (1997). Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli. Microbiology, 143(12), 3795-3805.
    da Silva, G. R., Dos Santos, A. L., Soares, A. C., Dos Santos, M. C., Dos Santos, S. C., Ţălu, Ş., Rodrigues de Lima, V., Bagnato, V. S., Sanches, E. A., & Inada, N. M. (2022). PLGA-PVA-peg single emulsion method as a candidate for aminolevulinic acid (5-ALA) encapsulation: laboratory scaling up and stability evaluation. Molecules, 27(18), 6029.
    DeVita Jr, V. T., & Chu, E. (2008). A history of cancer chemotherapy. Cancer Research, 68(21), 8643-8653.
    Elfsson, B., Wallin, I., Eksborg, S., Rudaeus, K., Ros, A., & Ehrsson, H. (1999). Stability of 5-aminolevulinic acid in aqueous solution. European Journal Of Pharmaceutical Sciences, 7(2), 87-91.
    Fink, A. L. (1999). Chaperone-mediated protein folding. Physiological Reviews, 79(2), 425-449.
    Flint, D. H., Tuminello, J., & Emptage, M. (1993). The inactivation of Fe-S cluster containing hydro-lyases by superoxide. Journal Of Biological Chemistry, 268(30), 22369-22376.
    Fotinos, N., Campo, M. A., Popowycz, F., Gurny, R., & Lange, N. (2006). 5‐aminolevulinic acid derivatives in photomedicine: characteristics, application and perspectives. Photochemistry And Photobiology, 82(4), 994-1015.
    Fu, W., Lin, J., & Cen, P. (2010). Expression of a hemA gene from Agrobacterium radiobacter in a rare codon optimizing Escherichia coli for improving 5-aminolevulinate production. Applied Biochemistry and Biotechnology, 160, 456-466.
    Gardner, P. R. (2002). Aconitase: sensitive target and measure of superoxide. In Methods In Enzymology (Vol. 349, pp. 9-23). Academic Press.
    Guan, N., & Liu, L. (2020). Microbial response to acid stress: mechanisms and applications. Applied Microbiology And Biotechnology, 104(1), 51-65.
    Guest, J. R. (1992). Oxygen-regulated gene expression in Escherichia coli. J. Gen. Microbiol, 138, 2253-2263.
    Guest, J. R., & Russell, G. C. (1992). Complexes and complexities of the citric acid cycle in Escherichia coli. Current Topics In Cellular Regulation, 33, 231-247.
    Gupta, R., Gupta, N., Gupta, R., & Gupta, N. (2021). Tricarboxylic acid cycle. Fundamentals of Bacterial Physiology and Metabolism, 327-346.
    Hadjipanayis, C. G., & Stummer, W. (2019). 5-ALA and FDA approval for glioma surgery. Journal of Neuro-oncology, 141, 479-486.
    Harada, Y., Murayama, Y., Takamatsu, T., Otsuji, E., & Tanaka, H. (2022). 5-Aminolevulinic acid-induced protoporphyrin IX fluorescence imaging for tumor detection: Recent advances and challenges. International Journal Of Molecular Sciences, 23(12), 6478.
    Harder, B. J., Bettenbrock, K., & Klamt, S. (2018). Temperature‐dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli. Biotechnology and Bioengineering, 115(1), 156-164.
    Harris, F., & Pierpoint, L. (2012). Photodynamic therapy based on 5‐aminolevulinic acid and its use as an antimicrobial agent. Medicinal Research Reviews, 32(6), 1292-1327.
    Hayer-Hartl, M., Bracher, A., & Hartl, F. U. (2016). The GroEL–GroES chaperonin machine: a nano-cage for protein folding. Trends in Biochemical Sciences, 41(1), 62-76.
    Heinemann, I. U., Jahn, M., & Jahn, D. (2008). The biochemistry of heme biosynthesis. Archives of Biochemistry and Biophysics, 474(2), 238-251.
    Hendawy, A. O., Khattab, M. S., Sugimura, S., & Sato, K. (2020). Effects of 5-aminolevulinic acid as a supplement on animal performance, iron status, and immune response in farm animals: A review. Animals, 10(8), 1352.
    Hoffmann, B., Messer, W., & Schwarz, U. (1972). Regulation of polar cap formation in the life cycle of Escherichia coli. Journal of Supramolecular Structure, 1(1), 29-37.
    Hsiang, C. C., Tan, S. I., Chen, Y. C., & Ng, I. S. (2023). Genetic design of co-expressing a novel aconitase with cis-aconitate decarboxylase and chaperone GroELS for high-level itaconic acid production. Process Biochemistry, 129, 133-139.
    Jackowski, S., & Rock, C. (1981). Regulation of coenzyme A biosynthesis. Journal of Bacteriology, 148(3), 926-932.
    Jackowski, S., & Rock, C. (1984). Metabolism of 4'-phosphopantetheine in Escherichia coli. Journal of Bacteriology, 158(1), 115-120.
    Jonas, A., Phillips, M., Vance, D., & Vance, J. (2008). Biochemistry of lipids, lipoproteins and membranes. In: Elsevier Science New York.
    Jung, S., Yang, K., Lee, D.-E., & Back, K. (2004). Expression of Bradyrhizobium japonicum 5-aminolevulinic acid synthase induces severe photodynamic damage in transgenic rice. Plant Science, 167(4), 789-795.
    Kane, J. F. (1995). Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Current Opinion in Biotechnology, 6(5), 494-500.
    Kang, Z., Wang, Y., Gu, P., Wang, Q., & Qi, Q. (2011). Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metabolic Engineering, 13(5), 492-498.
    Kang, Z., Zhang, J., Zhou, J., Qi, Q., Du, G., & Chen, J. (2012). Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnology Advances, 30(6), 1533-1542.
    Kelty, C. J., Brown, N. J., Reed, M. W., & Ackroyd, R. (2002). The use of 5-aminolaevulinic acid as a photosensitiser in photodynamic therapy and photodiagnosis. Photochemical & Photobiological Sciences, 1(3), 158-168.
    Kim, S.Y., Marekov, L., Bubber, P., Browne, S. E., Stavrovskaya, I., Lee, J., Steinert, P. M., Blass, J. P., Beal, M. F., & Gibson, G. E. (2005). Mitochondrial aconitase is a transglutaminase 2 substrate: transglutamination is a probable mechanism contributing to high-molecular-weight aggregates of aconitase and loss of aconitase activity in Huntington disease brain. Neurochemical Research, 30, 1245-1255.
    Kleinkauf, H. (2000). The role of 4′‐phosphopantetheine in the biosynthesis of fatty acids, polyketides and peptides. Biofactors, 11(1‐2), 91-92.
    Ko, Y. J., You, S. K., Kim, M., Lee, E., Shin, S. K., Park, H. M., Oh, Y., & Han, S. O. (2019). Enhanced Production of 5-aminolevulinic Acid via Flux Redistribution of TCA Cycle toward l-Glutamate in Corynebacterium glutamicum. Biotechnology and Bioprocess Engineering, 24, 915-923.
    Kolaj, O., Spada, S., Robin, S., & Wall, J. G. (2009). Use of folding modulators to improve heterologous protein production in Escherichia coli. Microbial Cell Factories, 8, 1-17.
    Krebs, H. (1954). The tricarboxylic acid cycle. In Chemical Pathways of Metabolism (pp. 109-171). Elsevier.
    Leonardi, R., Zhang, Y.-M., Rock, C. O., & Jackowski, S. (2005). Coenzyme A: back in action. Progress in Lipid Research, 44(2-3), 125-153.
    Lin, B., Fan, K., Zhao, J., Ji, J., Wu, L., Yang, K., & Tao, Y. (2015). Reconstitution of TCA cycle with DAOCS to engineer Escherichia coli into an efficient whole cell catalyst of penicillin G. Proceedings of the National Academy of Sciences, 112(32), 9855-9859.
    Lin, J., Fu, W., & Cen, P. (2009). Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresource Technology, 100(7), 2293-2297.
    Liu, H., Jiang, H., & Wang, Y. (2005). Chemical synthesis and application of 5-aminolevulinic acid, a new type of light-dynamic chemicals. Modern Chemical Industry, 24, 18.
    Liu, S., Zhang, G., Li, J., Li, X., & Zhang, J. (2016). Effects of metal ions on biomass and 5-aminolevulinic acid production in Rhodopseudomonas palustris wastewater treatment. Water Science and Technology, 73(2), 382-388.
    Lou, J.W., Zhu, L., Wu, M.B., Yang, L.R., Lin, J.P., & Cen, P.L. (2014). High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties. Journal of Zhejiang University SCIENCE B, 15(5), 491-499.
    Luo, Y., Liu, L., Yang, J., Su, A., Yu, Q., Wang, E., & Yuan, H. (2023). Efficient biosynthesis of 5-aminolevulinic acid from glutamate via whole-cell biocatalyst in immobilized engineered Escherichia coli. Catalysis Science & Technology, 13(9), 2810-2819.
    Lushchak, O. V., Piroddi, M., Galli, F., & Lushchak, V. I. (2014). Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Report, 19(1), 8-15.
    Lushchak, V. (2007). Free radical oxidation of proteins and its relationship with functional state of organisms. Biochemistry (Moscow), 72, 809-827.
    Maragkos, G. A., Schüpper, A. J., Lakomkin, N., Sideras, P., Price, G., Baron, R., Hamilton, T., Haider, S., Lee, I. Y., & Hadjipanayis, C. G. (2021). Fluorescence-guided high-grade glioma surgery more than four hours after 5-aminolevulinic acid administration. Frontiers in Neurology, 12, 644804.
    Miscevic, D., Mao, J. Y., Kefale, T., Abedi, D., Moo‐Young, M., & Perry Chou, C. (2021). Strain engineering for high‐level 5‐aminolevulinic acid production in Escherichia coli. Biotechnology and bioengineering, 118(1), 30-42.
    Oliveira, J., & Reygaert, W. C. (2019). Gram negative bacteria.
    Pham, D. N., & Kim, C.-J. (2021). A novel two-stage pH control strategy for the production of 5-aminolevulinic acid using recombinant Streptomyces coelicolor. Biotechnology and Bioprocess Engineering, 26(4), 669-676.
    Pignatelli, P., Umme, S., D’Antonio, D. L., Piattelli, A., & Curia, M. C. (2023). Reactive oxygen species produced by 5-aminolevulinic acid photodynamic therapy in the treatment of cancer. International Journal of Molecular Sciences, 24(10), 8964.
    Pu, W., Chen, J., Zhou, Y., Qiu, H., Shi, T., Zhou, W., Guo, X., Cai, N., Tan, Z., & Liu, J. (2023). Systems metabolic engineering of Escherichia coli for hyper-production of 5‑aminolevulinic acid. Biotechnology for Biofuels and Bioproducts, 16(1), 31.
    Puthan Veetil, V., Fibriansah, G., Raj, H., Thunnissen, A.-M. W., & Poelarends, G. J. (2012). Aspartase/fumarase superfamily: a common catalytic strategy involving general base-catalyzed formation of a highly stabilized aci-carboxylate intermediate. Biochemistry, 51(21), 4237-4243.
    Radunović, M., Petrini, M., Vlajic, T., Iezzi, G., Di Lodovico, S., Piattelli, A., & D'Ercole, S. (2020). Effects of a novel gel containing 5-aminolevulinic acid and red LED against bacteria involved in peri-implantitis and other oral infections. Journal of Photochemistry and Photobiology B: Biology, 205, 111826.
    Regev-Rudzki, N., Karniely, S., Ben-Haim, N. N., & Pines, O. (2005). Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Molecular Biology of the Cell, 16(9), 4163-4171.
    Rhaman, M. S., Imran, S., Karim, M. M., Chakrobortty, J., Mahamud, M. A., Sarker, P., Tahjib-Ul-Arif, M., Robin, A. H. K., Ye, W., & Murata, Y. (2021). 5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress. Plant Cell Reports, 40, 1451-1469.
    Rock, C. O., & Cronan, J. E. (1996). Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1302(1), 1-16.
    Rock, C. O., Park, H.-W., & Jackowski, S. (2003). Role of feedback regulation of pantothenate kinase (CoaA) in control of coenzyme A levels in Escherichia coli. Journal of Bacteriology, 185(11), 3410-3415.
    Sasaki, K., Watanabe, M., Tanaka, T., & Tanaka, T. (2002). Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology, 58, 23-29.
    Shemin, D., & Russell, C. S. (1953). δ-Aminolevulinic acid, its role in the biosynthesis of porphyrins and purines1. Journal of the American Chemical Society, 75(19), 4873-4874.
    Shi, L., Wang, H., Chen, K., Yan, J., Yu, B., Wang, S., Yin, R., Nong, X., Zou, X., & Chen, Z. (2021). Chinese guidelines on the clinical application of 5-aminolevulinic acid-based photodynamic therapy in dermatology (2021 edition). Photodiagnosis and Photodynamic Therapy, 35, 102340.
    Smirnov, S. V., Kodera, T., Samsonova, N. N., Kotlyarovа, V. А., Rushkevich, N. Y., Kivero, А. D., Sokolov, P. M., Hibi, M., Ogawa, J., & Shimizu, S. (2010). Metabolic engineering of Escherichia coli to produce (2S, 3R, 4S)-4-hydroxyisoleucine. Applied Microbiology and Biotechnology, 88, 719-726.
    Soma, Y., Fujiwara, Y., Nakagawa, T., Tsuruno, K., & Hanai, T. (2017). Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose. Metabolic Engineering, 43, 54-63.
    Song, W.-J., & Jackowski, S. (1992). Cloning, sequencing, and expression of the pantothenate kinase (coaA) gene of Escherichia coli. Journal of Bacteriology, 174(20), 6411-6417.
    Song, W.J., & Jackowski, S. (1994). Kinetics and regulation of pantothenate kinase from Escherichia coli. Journal of Biological Chemistry, 269(43), 27051-27058.
    Sriram, G., Martinez, J. A., McCabe, E. R., Liao, J. C., & Dipple, K. M. (2005). Single-gene disorders: what role could moonlighting enzymes play? The American Journal of Human Genetics, 76(6), 911-924.
    Stock, J., & Surette, M. (1996). Escherichia coli and Salmonella: cellular and molecular biology. ASM: Washington, DC, USA.
    Stummer, W., Pichlmeier, U., Meinel, T., Wiestler, O. D., Zanella, F., & Reulen, H.-J. (2006). Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. The Lancet Oncology, 7(5), 392-401.
    Stummer, W., Reulen, H.-J., Meinel, T., Pichlmeier, U., Schumacher, W., Tonn, J.-C., Rohde, V., Oppel, F., Turowski, B., & Woiciechowsky, C. (2008). Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery, 62(3), 564-576.
    Su, T., Guo, Q., Zheng, Y., Liang, Q., Wang, Q., & Qi, Q. (2019). Fine-tuning of hemB using CRISPRi for increasing 5-aminolevulinic acid production in Escherichia coli. Frontiers in Microbiology, 10, 1731.
    Tan, S.I., You, S.C., Shih, I.T., & Ng, I.S. (2020). Quantification, regulation and production of 5-aminolevulinic acid by green fluorescent protein in recombinant Escherichia coli. Journal of Bioscience and Bioengineering, 129(4), 387-394.
    Tang, Y., Quail, M. A., Artymiuk, P. J., Guest, J. R., & Green, J. (2002). Escherichia coli aconitases and oxidative stress: post-transcriptional regulation of sodA expression. Microbiology, 148(4), 1027-1037.
    Theodosiou, E., Breisch, M., Julsing, M. K., Falcioni, F., Bühler, B., & Schmid, A. (2017). An artificial TCA cycle selects for efficient α‐ketoglutarate dependent hydroxylase catalysis in engineered Escherichia coli. Biotechnology and Bioengineering, 114(7), 1511-1520.
    Ting, W. W., & Ng, I. S. (2023). Effective 5‐aminolevulinic acid production via T7 RNA polymerase and RuBisCO equipped Escherichia coli W3110. Biotechnology and Bioengineering, 120(2), 583-592.
    Uehlinger, P., Zellweger, M., Wagnières, G., Juillerat-Jeanneret, L., van den Bergh, H., & Lange, N. (2000). 5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells. Journal of Photochemistry and Photobiology B: Biology, 54(1), 72-80.
    Vadali, R. V., Bennett, G. N., & San, K. Y. (2004a). Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli. Metabolic Engineering, 6(2), 133-139.
    Vadali, R. V., Bennett, G. N., & San, K. Y. (2004b). Enhanced isoamyl acetate production upon manipulation of the acetyl‐CoA node in Escherichia coli. Biotechnology Progress, 20(3), 692-697.
    Vallari, D., & Jackowski, S. (1988). Biosynthesis and degradation both contribute to the regulation of coenzyme A content in Escherichia coli. Journal of Bacteriology, 170(9), 3961-3966.
    Vallari, D. S., & Rock, C. (1987). Isolation and characterization of temperature-sensitive pantothenate kinase (coaA) mutants of Escherichia coli. Journal of Bacteriology, 169(12), 5795-5800.
    Varghese, S., Tang, Y., & Imlay, J. A. (2003). Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. Journal of Bacteriology 185(1), 221-230.
    Vélot, C., & Srere, P. A. (2000). Reversible transdominant inhibition of a metabolic pathway: In vivo evidence of interaction between two sequential tricarboxylic acid cycle enzymes in yeast. Journal of Biological Chemistry, 275(17), 12926-12933.
    Velsor, L. W., Kariya, C., Kachadourian, R., & Day, B. J. (2006). Mitochondrial oxidative stress in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. American Journal of Respiratory Cell and Molecular Biology, 35(5), 579-586.
    Wang, L., Yan, S., Yang, T., Xu, M., Zhang, X., Shao, M., Li, H., & Rao, Z. (2021). Engineering the C4 pathway of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Sheng wu Gong Cheng xue bao= Chinese Journal of Biotechnology, 37(12), 4314-4328.
    Wang, Q., Jia, M., Li, H., Li, Q., Zhang, J., Su, T., Cui, Z., Qi, Q., & Wang, Q. (2024). Design of a Genetically Encoded Biosensor for High-Throughput Screening and Engineering 5-Aminolevulinic Acid Hyper-Producing Escherichia coli. Acs Sustainable Chemistry & Engineering, 12(12), 4846-4857.
    Woldringh, C. (1976). Morphological analysis of nuclear separation and cell division during the life cycle of Escherichia coli. Journal of Bacteriology 125(1), 248-257.
    Woods, S. A., & Guest, J. R. (1987). Differential roles of the Escherichia coli fumarases and fnr-dependent expression of fumarase B and aspartase. FEMS Microbiology Letters, 48(1-2), 219-224.
    Wu, J., Wu, J., He, R. L., Hu, L., Liu, D. F., & Li, W. W. (2024). Modularized Engineering of Shewanella oneidensis MR-1 for Efficient and Directional Synthesis of 5-Aminolevulinic Acid. Metabolic engineering, 83, 206-215.
    Wu, Y., Liao, W., Dawuda, M. M., Hu, L., & Yu, J. (2019). 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review. Plant Growth Regulation, 87, 357-374.
    Yu, F., Wang, Z., Zhang, Z., Zhou, J., Li, J., Chen, J., Du, G., & Zhao, X. (2024). Biosynthesis, acquisition, regulation, and upcycling of heme: recent advances. Critical Reviews in Biotechnology, 1-17.
    Yu, T. H., Tan, S. I., Yi, Y. C., Xue, C., Ting, W. W., Chang, J. J., & Ng, I. S. (2022). New insight into the codon usage and medium optimization toward stable and high-level 5-aminolevulinic acid production in Escherichia coli. Biochemical Engineering Journal, 177, 108259.
    Yu, X., Cao, Y., Chen, Y., Qi, Z., Chen, Q., Wang, J., & Kong, Q. (2022). Efficient production of 5-aminolevulinic acid from low-cost and sustainable bioresources of corn by engineered Corynebacterium glutamicum. Bioresource Technology Reports, 20, 101277.
    Yun, M., Park, C. G., Kim, J. Y., Rock, C. O., Jackowski, S., & Park, H. W. (2000). Structural basis for the feedback regulation of Escherichia coli pantothenate kinase by coenzyme A. Journal of Biological Chemistry, 275(36), 28093-28099.
    Zhang, B., & Ye, B. C. (2018). Pathway engineering in Corynebacterium glutamicum S9114 for 5-aminolevulinic acid production. 3 Biotech, 8, 1-10.
    Zhang, C., Li, Y., Zhu, F., Li, Z., Lu, N., Li, Y., Xu, Q., & Chen, N. (2020). Metabolic engineering of an auto-regulated Corynebacterium glutamicum chassis for biosynthesis of 5-aminolevulinic acid. Bioresource Technology, 318, 124064.
    Zheng, L., Kennedy, M. C., Blondin, G. A., Beinert, H., & Zalkin, H. (1992). Binding of cytosolic aconitase to the iron responsive element of porcine mitochondrial aconitase mRNA. Archives of Biochemistry and Biophysics, 299(2), 356-360.
    Zhu, C., Chen, J., Wang, Y., Wang, L., Guo, X., Chen, N., Zheng, P., Sun, J., & Ma, Y. (2019). Enhancing 5‐aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Biotechnology and Bioengineering, 116(8), 2018-2028.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE