簡易檢索 / 詳目顯示

研究生: 陳奕璋
Chen, Yi-Chang
論文名稱: 應用隨機遞減法於環境振動下之系統模態參數識別
Application of the Random Decrement Technique to Identification of Modal Parameters of Systems under Ambient Vibration
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 88
中文關鍵詞: 隨機遞減法資料相關特徵系統實現法環境振動非定常白訊
外文關鍵詞: Eigensystem Realization Algorithm using Data Correlation, Random Decrement Technique, ambient vibration, nonstationary white noise
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在模態分析的理論中,線性結構系統在自由振動下不受隨機外力的影響且包含了結構之動態特性,因此模態參數識別之理論通常以自由響應數據來識別模態參數。但在真實情況中,當線性結構系統受環境激勵產生振動時,環境響應訊號具有隨機性,因此如何去除環境響應中的隨機性,以進行模態參數識別為本研究之重點。本文考慮當線性結構系統在環境振動下,若激勵訊號可近似為乘積模型之非定常白訊,則此環境響應之自相關函數相當於系統自由振動之自相關函數,而環境響應訊號經由隨機遞減法處理後所得之隨機遞減訊號可證明為正比於環境響應之自相關函數與確定性函數之自相關函數的乘積,因此隨機遞減法可有效地去除環境響應中的隨機成分而得到自由響應。資料相關特徵系統實現法(ERA/DC)是利用建構資料相關矩陣來去除環境響應中的隨機成分,此資料相關矩陣與隨機遞減訊號皆為利用相關函數的概念消除環境響應中的隨機成分,因此本研究於ERA/DC之架構下將資料相關矩陣替換成隨機遞減訊號進而求得模態參數。最後並經由數值模擬驗證,說明此做法能有效識別出結構之模態參數。

    In the theory of modal analysis, since the linear structure system is not affected by random external forces under free vibration, the theory of modal parameter identification is usually based on free response data to identify modal parameters. In the real situation, when the linear structural system is excited by the ambient force to produce ambient vibration, the ambient response signal is random. Therefore, how to remove the randomness in the ambient response and convert it into a free response is the focus of this study. This paper considers a linear structure system under ambient vibration. If the excitation signal can be approximated as nonstationary white noise, the autocorrelation function of the ambient response is equal to the autocorrelation function of the free vibration of the system. The ambient response is converted into a randomdec signature by the random decrement technique. The randomdec signature can be proved to be proportional to product of the autocorrelation function of the ambient response and the autocorrelation function of the deterministic function. Therefore, the random decrement technique can effectively remove the random component in the ambient response to obtain a free response. In this study, Eigensystem Realization Algorithm using Data Correlation (ERA/DC) construct a data-correlation matrix to remove random components in the ambient response. The data-correlation matrix and the randomdec signature both use the concept of correlation functions to eliminate randomness in the ambient response. Therefore, in the ERA/DC framework, the data correlation matrix is replaced with the randomdec signature to obtain the modal parameters. Through numerical simulation, this method can effectively identify the modal parameters of the structure.

    摘要 I 致謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 引言 1 1-2 模態分析與系統識別 2 1-3 文獻回顧 4 1-4 研究動機與目的 6 1-5 論文架構 8 第二章 隨機振動之基礎理論 9 2-1 引言 9 2-2 隨機過程相關理論 9 2-2-1 隨機過程(random process) 9 2-2-2 定常與非定常過程(stationary and non-stationary process) 10 2-2-3 自相關函數(autocorrelation function)與功率頻譜密度(power spectral density) 12 2-2-4 高斯過程(Gaussian process) 15 2-3 結構系統之確定性動力分析 15 2-3-1 自由振動分析 16 2-3-1 脈衝激勵之響應分析 18 2-4 定常外力過程分析 19 2-5 非定常外力過程分析 21 第三章 環境振動下之隨機遞減法 24 3-1 引言 24 3-2 隨機遞減法之基礎理論 25 3-2-1 隨機遞減公式之概念 25 3-2-2 隨機遞減法之數學推導及與相關函數關係 26 3-2-3 隨機遞減法之觸發條件 29 3-3 應用隨機遞減法於非定常訊號分析 31 第四章 系統實現之模態參數識別理論 35 4-1 引言 35 4-2 系統實現理論(system realization theory) 36 4-2-1 狀態空間模型(state-space model) 36 4-2-2 馬可夫參數(Markov Parameters) 39 4-2-3 可控制性(controllability)與可觀測性(observeability) 41 4-2-4 系統實現之基本概念 43 4-3 特徵系統實現法(ERA ) 45 4-4 資料相關特徵系統實現法(ERA/DC) 48 4-5 應用隨機遞減法於特徵系統實現法(RDT-ERA) 52 第五章 數值模擬 53 5-1 引言 53 5-2 環境激勵訊號之模擬 53 5-3 環境激勵於鏈模型之隨機遞減法 56 5-3-1定常白訊於鏈模型之隨機遞減法 57 5-3-2非定常白訊於鏈模型之隨機遞減法 58 5-4 環境激勵於鏈模型之模態參數識別 59 5-4-1定常白訊於鏈模型之模態參數識別 59 5-4-2非定常白訊於鏈模型之模態參數識別 62 第六章 結論 65 參考文獻 67

    [1] Ibrahim, S. R. & Mikulcik, E. C., “A Method for the Direct Identification of Vibration Parameters from Free Response”, Shock and Vibration Bulletin, Vol. 47, Pt. 4, pp. 183-198, 1977.
    [2] Ibrahim, S. R. & Mikulcik, E. C., “The experimental Determination of Vibration Parameters from Time Responses”, Shock and Vibration Bulletin, Vol. 46, Pt. 5, pp. 183-198, 1976.
    [3] Pappa, R. S. & Ibrahim, S. R., “A Parametric Study of Ibrahim Time Domain Modal Analysis”, Shock and Vibration Bulletin, Vol. 51, Pt. 3, pp. 43-72, 1981.
    [4] Deblauwe, R., Brown, D. L. & Allemang, R. J.,“The polyreference time domain technique”, Proc. 5th Int. Modal Analysis Conf., Orlando, Fla., pp. 832-845,1987.
    [5] Vold, H. & Rocklin, G. F.,“The Numerical Implementation of a Multi-Input Modal Estimation Method for Mini-Computers”, International Modal Analysis Conference Proceedings, Nov. 1982.
    [6] Juang, J. N. & Pappa, R .S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Modal Reduction”, Journal of Guidance and Control Dynamics, AIAA, Vol. 8, No. 5, pp.620-627, 1985.
    [7] Ho, B. L. & Kalman, R. E., “Effective Construction of Linear State-Variable Models from Input/Output Data”, Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, pp. 449-459, 1965.
    [8] Juang, J. N., Cooper, J. E. & Wright, J. R., “An Eigensystem Realization Algorithm Using Data Correlations (ERA/DC) for Modal Parameter Identification”, Control-Theory and Advanced Technology, Vol. 4, No. 1, pp. 5-14, 1988.
    [9] Cole, H. A., “On-line Failure Detection and Damping Measurement of Aerospace Structures by Random Decrement Signatures”, NASA CR-2205 ,1973.
    [10] Ibrahim, S. R., “Random Decrement Technique for Modal Identification of Structures”, Journal of Spacecraft and Rockets, Vol. 140, pp. 696-700, Nov. 1977.
    [11] Vandiver, J. K., Dunwoody, A. B., Campbell, R. B. & Cook, M. F., “A Mathematical Basis for the Random Decrement Vibration Signature Analysis Technique”, Journal of Mechanical Design, Vol. 104, pp. 307-313, April 1982.
    [12] Lin, C. S. & Chiang, D. Y. , “Modal identification from nonstationary ambient response data using extended random decrement algorithm”, Computers and Structures, Vol. 119, pp. 104-114, 2013.
    [13] James, G. H., Carne. T. G. & Lauffer, J. P., “The Natural Excitation Technique for Modal Parameter Extraction from Operating Wind Yurbines”, SAND92-1666. UC-261, Sandia National Aboratories, 1993.
    [14] 曹松華, 隨機遞減法於非定常環境振動模態參數識別之應用, 碩士論文, 國立成功大學航空太空工程研究所, 2004.
    [15] Bendat, J. S & Piersol, A. G, “Random Data: Analysis and Measurement Procedures, Fourth Edition”, Wiley, New York, 2010.
    [16] Newland, D. E., “An Introduction to Random Vibrations and Spectral Analysis, Second Edition”, John Wiley & Sons, New York, 1984.
    [17] Soong, T. T. & Mircea Grigoriu, “Random Vibration of Mechanical and Structural Systems”, Prentice-Hall, Chap.2, 1993.
    [18] Ibrahim, S. R. ,Brincker, R. & Asmussen, J. C., “Modal Parameter Identification from Responses of General Unknown Random Inputs”, Proceedings of the 14th International Model Analysis Conference, Vol. 1, pp. 446-452, 1996.
    [19] Ibrahim, S. R., Asmussen, J. C. & Brincker, R., “Statistical Theory of the Vector Random Decrement Technique”, Journal of Sound and Vibration, Vol. 226, pp. 329-344, 1999.
    [20] Bedewi, N.E., “The Mathematical Foundation of the Auto and Cross-random Decrement Techniques and the Development of a System Identification Technique for the Detection of Structural Deterioration”, Ph. D Thesis, University of Maryland College Park, 1986.
    [21] Asmussen, J.C. , “Modal analysis based on the random decrement technique-applications to civil engineering structures”, Ph.D.-Thesis Aalborg University, Denmark, Chap.3, 1997.
    [22] Chiang, D.Y. & Lin,C.S.,“Identification of Modal Parameters from Nonstationary Ambient Vibration Data Using Correlation Technique,” AIAA Journal, Vol. 46, No. 11, pp.2752-2759, 2008.
    [23] Juang, J. N., “Applied system identification”, N.J. :Prentice Hall, Englewood Cliffs, Chap.2, 1994.
    [24] Shinozuka, M., “Simulation of Multivariate and Multidimensional Random Processes”, Journal of the Acoustical Society of America, Vol. 49, No. 1., pp. 357-367, 1971.
    [25] Shinozuka, M., “Random Process with Evolutionary Power”, J. Eng. Mech. Div., ASCE, Vol. 96, EM4, pp. 543-545, 1970.

    無法下載圖示 校內:2026-07-07公開
    校外:2026-07-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE