| 研究生: |
徐韻婷 Hsu, Yun-Ting |
|---|---|
| 論文名稱: |
棕櫚仁殼、香菇包、汙泥及塑膠共氣化特性預測分析 Predictions on Co-gasification of Palm Kernel Shell, Shiitake Substrate, Sewage Sludge and Polyethene |
| 指導教授: |
林大惠
Lin, Ta-Hui |
| 共同指導教授: |
陳冠邦
Chen, Guan-Bang 伍芳嫺 Wu, Fang-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 生質料 、氣化 、ASPEN Plus |
| 外文關鍵詞: | Biomass, Gasification, ASPEN Plus |
| 相關次數: | 點閱:85 下載:32 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著人類對於能源依賴的提升以及環境永續意識的抬頭,人越來越重視發展綠色能源,生質能為廣為人知的潔淨能源之一。本研究旨在創建一個ASPEN Plus模型,應用於多種生質物進料之共氣化模擬,以實驗數據相比較確認模型之可行性與泛化能力。首先,研究基於不同假設的模型模擬結果差異,發現平衡模型會高估CO2與H2的生成,而忽略焦油計算的模型則會高估CO的產生,綜合來說,使用反應動力學並且考慮氣化過程中產生之焦油的模型可準確預測實驗值。接者,針對不同類型的進料,包含:棕櫚仁殼、汙泥以及塑膠,推導了在裂解階段不同的處理方式,此新穎的處理方式證實了模型的準確度。最後根據搭建的模型進行了兩兩不同生質物進料的共氣化變數分析,其變數有:氣化爐溫度、兩進料之混摻比、CO2佔氣化介質中的比例和當量比,並探討各變數對合成氣中H2、CH4以及CO的質量流率、HHV (Higher Heating Value)、H2/CO、CCE (Carbon conversion efficiency)以及CGE (Cold gas efficiency)的影響,結果表明,H2生成量與蒸氣在氣化界質比例為正相關,CO則與進料種類以及當量比有關,多數情況下,當量比為0.2時,CO有最高值,最後,塑膠中含有大量的揮發份,因此當菇包與塑膠共氣化時,CH4的生成量會隨著塑膠在料源比例增加而增加,而高溫通常更有利於氣化反應,尤其對於焦油裂解,其溫度應高於950 ℃以上,才會有明顯的反應速率提升。
With the increasing reliance on energy and the rise of environmental sustainability awareness, there is a growing emphasis on the development of green energy, and the bioenergy is widely recognized as one of the clean energy sources. This study aims to create an ASPEN Plus model for the co-gasification simulation of various biomass feedstocks and proof the feasibility of the model with experimental data. Firstly, the study examines the differences in model simulation results based on different assumptions. It is found that equilibrium models overestimate the production of CO2 and H2 while models neglecting tar calculations overestimate CO generation. In conclusion, a model that considers kinetic reactions and tar formation during gasification accurately predicts the experimental values. Furthermore, different treatment methods during the pyrolysis stage are derived for different types of feedstocks, including palm kernel shells, sludge, and plastics. These novel treatment methods verify the generalization ability of the model. Finally, the constructed model is used to perform co-gasification variable analysis for pairwise different biomass feedstocks. The variables include gasifier temperature, blending ratio of the two feedstocks, mixing ratio of the gasifying agent, and equivalence ratio. The study investigates the effects of these variables on the mass flow rate of H2, CH4, and CO in the syngas, higher heating value (HHV), H2/CO ratio, carbon conversion efficiency (CCE), and cold gas efficiency (CGE). The results indicate that the hydrogen generation is positively correlated with the steam-to-carbon ratio in the gasification medium, while CO is influenced by the feedstock type and equivalence ratio. In most cases, CO reaches its highest value when the equivalence ratio is 0.2. Lastly, plastics contain a significant amount of volatile matter. Therefore, when co-gasifying mushrooms and plastics, the production of CH4 increases with the proportion of plastics in the feedstock. Higher temperatures are generally more favorable for gasification reactions, especially for tar cracking, where the temperature should be above 950 °C to achieve a noticeable increase in reaction rate.
[1] Statistical Review of World Energy, 71st edition, 2022, [Online] Available: bp.com/statisticalreview
[2] C. Starr. “Comment on Atmospheric residence time and the carbon cycle”, Energy--The International Journal, Vol. 18, pp. 1297-1310, 1993.
[3] A. Tursi. “A review on biomass: Importance, chemistry, classification, and conversion”, Biofuel Research Journal, Vol. 22, pp. 962-979, 2019.
[4] H. Dafiqurrohman, K. A. Safitri, M. I. B. Setyawan, A. Surjosatyo, and M. Aziz. “Gasification of rice wastes toward green and sustainable energy production: A review”, Journal of Cleaner Production, Vol. 366, p. 132926, 2022.
[5] C. F. Valdés, G. Marrugo, F. Chejne, J. I. Montoya, and C. A. Gómez. “Pilot-Scale Fluidized-Bed Co-gasification of Palm Kernel Shell with Sub-bituminous Coal”, Energy Fuels, Vol. 29, pp. 5894-5901, 2015.
[6] M. A. Ariffin, W. M. F. W. Mahmood, R. Mohamed, and M. T. M. Nor. “Performance of oil palm kernel shell gasification using a medium-scale downdraft gasifier”, International Journal of Green Energy, Vol. 13, pp. 513-520, 2016.
[7] M. H. Basha, S. A. Sulaiman, and Y. Uemura. “Co-gasification of palm kernel shell and polystyrene plastic: Effect of different operating conditions”, Journal of the Energy Institute, Vol. 93, pp. 1045-1052, 2020.
[8] R. Prasad, J. Lisiecka, M. Antala, and A. Rastogi. “Influence of Different Spent Mushroom Substrates on Yield, Morphological and Photosynthetic Parameters of Strawberry”, Agronomy, Vol. 11, p. 2086, 2021.
[9] B. C. Williams, J. T. McMullan, and S. McCahey. “An initial assessment of spent mushroom compost as a potential energy feedstock”, Bioresource Technology, Vol. 79, pp. 227-230, 2001.
[10] R. P. Singh, and M. Agrawal. “Potential benefits and risks of land application of sewage sludge”, Waste Management, Vol. 28, pp. 347–358, 2008.
[11] S. Werle, and R. K. Wilk. “A review of methods for the thermal utilization of sewage sludge: The Polish perspective”, Renewable Energy, Vol. 35, pp. 1914–1919, 2010.
[12] E. Gasafi, M.-Y. Reinecke, A. Kruse, and L. Schebek. “Economic analysis of sewage sludge gasification in supercritical water for hydrogen production”, Biomass and Bioenergy, Vol. 32, pp. 1085–1096, 2008.
[13] X. Li-ping, L. Tao, G. Jian-dong, F. Xue-ning, W. Xia, and J. Yuan-guang. “Effect of moisture content in sewage sludge on air gasification”, Journal of Fuel Chemistry and Technology, Vol. 38, pp. 615-620, 2010.
[14] L. M. Heidbreder, I. Bablok, S. Drews, and C. Menzel. “Tackling the plastic problem: A review on perceptions, behaviors, and interventions”, Science of the Total Environment, Vol. 668, pp. 1077–1093, 2019.
[15] R. Zevenhoven, M. Karlsson, M. Hupa, and M. Frankenhaeuser. “Combustion and Gasification Properties of Plastics Particles”, Journal of the Air & Waste Management Association, Vol. 47, pp. 861-870, 2011.
[16] I. I. Ahmed, N. Nipattummakul, and A. K. Gupta. “Characteristics of syngas from co-gasification of polyethylene and woodchips”, Applied Energy, Vol. 88, pp. 165–174, 2011.
[17] C. Higman. “Chapter 11 – Gasification”, Combustion Engineering Issues for Solid Fuel Systems, pp. 423-468, 2008.
[18] M. Balat. “Gasification of Biomass to Produce Gaseous Products”, Energy Sources,Vol. 31, pp. 516-526, 2009.
[19] D. Neves, H. Thunman, A. Matos, L. Tarelho, and A. Gómez-Barea. “Characterization and prediction of biomass pyrolysis products”, Progress in Energy and Combustion Science, Vol. 37, pp. 611-630, 2011.
[20] H. Yang, and H. Chen. “Biomass gasification for synthetic liquid fuel production, Gasification for Synthetic Fuel Production Fundamentals”, Processes and Applications Woodhead Publishing Series in Energy, pp. 241-275, 2015.
[21] S. Safarian, R. Unnþórsson, and C. Richter. “A review of biomass gasification modelling”, Renewable and Sustainable Energy Reviews, Vol. 110, pp. 378–391, 2019.
[22] M. Puig-Arnavat, J. C. Bruno, and A. Coronas. “Review and analysis of biomass gasification models”, Renewable and Sustainable Energy Reviews, Vol. 14, pp. 2841–2851, 2010.
[23] Standard Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal and Coke, [Online] Available: https://archive.org/details/gov.law.astm.d5373.1993/page/n3/mode/2up
[24] A. V. Fedorov, Y. V. Dubinin, P. M. Yeletsky, I. A. Fedorov, S. N. Shelest, and V. A. Yakovlev. “Combustion of sewage sludge in a fluidized bed of catalyst: ASPEN PLUS model”, Journal of Hazardous Materials, Vol. 405, p. 124196, 2021.
[25] G.-B. Chen, F.-H. Wu, S.-P. Lin, Y.-T. Hsu, and T.-H. Lin. “A study of sewage sludge Co-gasification with waste shiitake substrate”, Energy, Vol. 259, p. 124991, 2022.
[26] C. Panda. “Aspen plus simulation and experimental studies on biomass gasification”, National Institute of Technology Rourkela, 2012.
[27] L. P. R. Pala, Q. Wang, G. Kolb, V. Hessel. “Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: an Aspen Plus model”, Renew Energy, Vol. 101, pp. 484–92, 2017.
[28] W. Doherty, A. Reynolds, and D. Kennedy. “Aspen plus simulation of biomass gasification in a steam blown dual fluidised bed”, Materials and processes for energy: communicating current research and technological developments, 2013.
[29] T. Phuphuakrat, N. Nipattummakul, T. Namioka, S. Kerdsuwan, and K. Yoshikawa. “Characterization of tar content in the syngas produced in a downdraft type fixed bed gasification system from dried sewage sludge”, Fuel, Vol. 89, pp. 2278–2284, 2010.
[30] E. M. Grieco, and G. Baldi. “Pyrolysis of polyethylene mixed with paper and wood: Interaction effects on tar, char and gas yields”, Waste Management, Vol. 32, pp. 833–839, 2012.
[31] A. M. A. Ahmed, A. Salmiaton, T. S. Y. Choong, and W. A. K. G. W. Azlina. “Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus”, Renewable and Sustainable Energy Reviews, Vol. 52, pp. 1623–1644, 2015.
[32] S. Jarungthammachote, and A. Dutta. “Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers”, Energy Conversion and Management, Vol. 49, pp. 1345–1356, 2008.
[33] D. Saebea, P. Ruengrit, A. Arpornwichanop, and Y. Patcharavorachot. “Gasification of plastic waste for synthesis gas production”, Energy Reports, Vol. 6, pp. 202-207, 2020.
[34] K. J. Laidler. “The Development of the Arrhenius Equation”, Journal of Chemical Education, [Online] Available: https://pubs.acs.org/sharingguidelines
[35] M. Puig-Gamero, D. T. Pio, L. A. C. Tarelho, P. S´anchez, and L. Sanchez-Silva. “Simulation of biomass gasification in bubbling fluidized bed reactor using aspen plus®”, Energy Conversion and Management, Vol. 235, p. 113981, 2021.
[36] S. R. Turns. “An Introduction to Combustion: Concepts and Application”, McGraw Hill Publishers, pp. 19-20, 2001.
[37] S. Mishra, and R. K. Upadhyay. “Review on biomass gasification: Gasifiers, gasifying mediums, and operational parameters”, Materials Science for Energy Technologies, Vol. 4, pp. 329–340, 2021.
[38] M. Rüdisüli, T. J. Schildhauer, S. M. A. Biollaz, and J. R. van Ommen. “Scale-up of bubbling fluidized bed reactors — A review”, Powder Technology, Vol. 217, pp. 21–38, 2012.
[39] G.-B. Chen, F.-H. Wu, T.-L. Fang, H.-T. Lin, and Y.-C. Chao. “A study of Co-gasification of sewage sludge and palm kernel shells”, Energy, Vol. 218, p. 119532, 2021.
[40] C.-Y. Chang. “A study of waste shiitake substrate co-gasification with waste polyethylene”, 2022.