簡易檢索 / 詳目顯示

研究生: 蔡禮聿
Tsai, Li-yu
論文名稱: 高空短暫發光現象與劇烈天氣的關聯性
Some Interesting Relationships between TLEs and Severe Weather Phenomena
指導教授: 許瑞榮
Hsu, Rue-ron
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 77
中文關鍵詞: 熱帶氣旋追電計畫巨大噴流閃電高空短暫發光現象淘氣精靈
外文關鍵詞: TLE, elve, lightning, tropical cyclone, DOTSTAR, gigantic jet
相關次數: 點閱:105下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在已知的高空短暫發光現象中,淘氣精靈是ISUAL 觀測資料中為數最多的一類,它與閃電的關聯性也一直是重要的研究問題。我們從超過4000 個淘氣精靈中,篩選中300 個可清楚分辦淘氣精靈型態和其原生閃電的事件,得出無洞型淘氣精靈與有洞型淘氣精靈的出現比率為2/3。這個結果和原先預期應該和雲間閃電(IC)與雲對地閃電(CG)的比例(IC/CG=3/1)相當的結果大不相同。在此,我們使用傳導線模型(TL model)分別模擬IC 或CG 誘發淘氣精靈的臨界峰值電流與回擊速度,試圖解釋ISUAL 結果之可能成因。另外,我們也介紹了2006 年開始執行的追電計畫:內容包含觀測儀器的建置與初步觀測結果,並以實際飛行任務所拍攝的影像,與地面測試時所拍攝到的巨大噴流影像,說明改良後的自動化觀測儀器的觀測能力。

    Abstract
    Among the known species of upper atmospheric transient luminous events, elve is the most abundant in the ISUAL recorded events. The correlation between elves and their causative cloud-to-ground lightning is an interesting problem needed to be addressed. We selected 300 elves with distinct morphology and parent lightnings from the 4000-plus elves recorded by ISUAL since June 2004. From these elves, the ratio between the pancake-shape and the donut-shape elves is deduced to be two to three. This ratio was unexpected since the known occurrence ratio between the inter-cloud discharges (IC) and the cloud-to ground flashes (CG) is known to be around three to one. To explore the root cause behind this discrepancy, this thesis work carried out numerical simulations to determine the minimal peak currents for ICs and CGs to generate these two distinct types of elves. We
    found that the initiating current for the pancake elves from ICs is substantially higher than that for the donut elves from CGs. In this thesis, we also report our cooperation with the DOTSTAR project. Introduction of JOBS (Jet OBservation System) and initial test images are included. Using the same
    camera system, we have successfully observed gigantic jets on ground. Hence, we have demonstrated the capability of this imaging system and its readiness for the future aircraft campaigns.

    目錄 CHAPTER 1 緒論............................................. 1 1.1 大氣層中的大區域環流....................................1 1.2 高空短暫發光現象........................................3 1.2.1 紅色精靈(sprite)......................................5 1.2.2 噴流(jets)............................................5 1.2.3 淘氣精靈(elves) ......................................6 1.3 劇烈天氣................................................7 1.3.1 閃電..................................................7 1.3.2 熱帶氣旋(tropical cyclones) ..........................9 CHAPTER 2 儀器與實驗方法.................................. 12 2.1 高空大氣閃電影像儀(ISUAL) .............................12 2.1.1CCD 影像儀的特性......................................13 2.1.2 光譜光度儀的特性.....................................16 2.2 追風/追電計畫噴流觀測系統(Jet OBservation System, JOBS)20 CHAPTER 3 數據處理........................................ 27 3.1 淘氣精靈(elves)與閃電關係..............................27 3.1.1 淘氣精靈(elves)事件篩選..............................28 3.1.2 事件影像與可能對應閃電特性...........................34 3.1.3 從SP 的光變曲線探討對應於淘氣精靈的閃電特性..........36 3.1.4 從IC/CG 探討對應於淘氣精靈的閃電特性.................41 3.2 噴流(Jets)與熱帶氣旋關係...............................44 3.2.1 實例討論-ISUAL 觀測影像..............................44 CHAPTER 4 結果與分析...................................... 50 4.1 淘氣精靈(elves)與閃電關係..............................50 4.1.1 各式閃電模擬產生的淘氣精靈的類型.....................50 4.1.2 影響產生觀測到的淘氣精靈的因素.......................64 4.2 噴流(Jets)與氣旋關係...................................69 4.2.1 目前觀測結果.........................................69 4.2.2 未來觀測目標.........................................71 CHAPTER 5 結論............................................ 73 參考資料(REFERENCES)...................................... 75

    參考資料(References)
    1. Bruce, C. E. R., and R. H. Golde, The lightning discharge, J. Inst. Electr. Eng, 88(6),487–520, (1941).
    2. Chen, A. B., et al., Seasonal variation of the CG-induced sprites and elves, AGU Fall Meeting Abstracts, 51, 0276, (2006).
    3. Donald, A. C., Meteorology Today: An Introduction to Weather, Climate, and Environment. Pacific Grove. CA: Thomson/Brooks, pp.444-445, (2003).
    4. Fernsler, R. F., and H. L. Rowland, Models of lightning-produced sprites and elves,Journal of Geophysical Research, 101, 29653-29662, (1996).
    5. Franz, R. C., et al., Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System, Science, 249(4964), 48, (1990).
    6. Frey, H. U., et al., Beta-type stepped leader of elve-producing lightning, Geophysical Research Letters, 32, 13824, (2005).
    7. Fukunishi, H., et al., Elves: Lightning-induced transient luminous events in the lower ionosphere, Geophysical Research Letters, 23, 2157-2160, (1996).
    8. Goodman, S. J., et al., A Comparison of the Optical Pulse Characteristics of Intracloud and Cloud-to-Ground Lightning as Observed above Clouds, Journal of Applied Meteorology, 27(12), 1369-1381,(1988).
    9. Inan, U. S., et al., Heating and ionization of the lower ionosphere by lightning, Geophysical Research Letters, 18(4), (1991).
    10. Inan, U. S., et al., Space-time structure of optical flashes and ionization changes produced by lighting-EMP, Geophysical Research Letters, 23, 133-136, (1996).
    11. Israelevich, P. L., et al., Transient airglow enhancements observed from the space shuttle Columbia during the MEIDEX sprite campaign, Geophysical Research Letters,
    31, (2004).76
    12. Krider, E. P., Electromagnetic Fields, Poynting Vector, and Peak Power Radiated by Lightning Return Strokes, Journal of Geophysical Research, 97(D14), 15913-15917,(1992).
    13. Le Vine, D. M., and J. C. Willett, Comment on the transmission-line model for computing radiation from lightning, Journal of Geophysical Research, 97(D2),
    2601–2610, (1992).
    14. MacGorman, D. R., The Electrical Nature of Storms, Oxford University Press US, p.422, (1998).
    15. Markson, R., Solar modulation of atmospheric electrification and possible implications for the sun-weather relationship, Nature, 273(5658), 103-109, (1978).
    16. Mende, S. B., et al., D region ionization by lightning-induced electromagnetic pulses, Journal of Geophysical Research, 110, (2005).
    17. Pasko, V. P., et al., Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields, Geophysical Research Letters, 23, 649-652,
    (1996).
    18. Pasko, V. P., et al., Electrical discharge from a thundercloud top to the lower ionosphere, Nature, 416, 152-154, (2002).
    19. Pasko, V. P., Atmospheric physics: Electric jets, Nature, 423, 927-929, (2003).
    20. Uman, M. A., The Lightning Discharge, Dover Publications, p.12, (1987).
    21. Rakov, V. A. and Uman, M.A., Lightning: physics and effects, Cambridge University Press, p.25, (2003).
    22. Rakov, V. A. and Uman, M.A., Lightning: physics and effects, Cambridge University Press, pp.44-46, (2003).
    23. Rakov, V. A. and Uman, M.A., Lightning: physics and effects, Cambridge University Press, p.108, (2003).
    24. Rakov, V. A. and Uman, M.A., Lightning: physics and effects, Cambridge University Press, p.110, (2003).
    25. Rakov, V. A. and Uman, M.A., Lightning: physics and effects, Cambridge University Press, p.146, (2003).
    26. Rakov, V. A. and Uman, M.A., Lightning: physics and effects, Cambridge University Press, p.164, (2003).
    27. Rakov, V. A. and Uman, M.A., Lightning: physics and effects, Cambridge University Press, p.215, (2003).
    28. Rakov, V. A. and Uman, M.A., Lightning: physics and effects, Cambridge University Press, p.331, (2003).
    29. Rycroft, M. J., et al., The global atmospheric electric circuit, solar activity and climate change, Journal of Atmospheric and Solar-Terrestrial Physics, 62(17), 1563-1576, (2000).
    30. Smith, D., Observations and inferred physical characteristics of compact intracloud discharges, ICAE 99- International Conference on Atmospheric Electricity, 11 th,
    Guntersville, AL, 6-9, (1999).
    31. Su, H. T., et al., Gigantic jets between a thundercloud and the ionosphere, Nature, 423, 974-976, (2003).
    32. Su, H., et al., Global distribution of TLEs based on the preliminary ISUAL data, AGU Fall Meeting Abstracts, 51, 03, (2004).
    33. Sukhorukov, A. I., et al., On blue jet dynamics, Geophysical Research Letters, 23, 1625-1628, (1996).
    34. Tsai, L., and R. Hsu, 2006 Taiwan TLE campaign, AGU Fall Meeting Abstracts, 41, 02, (2006).
    35. Uman, M. A., and D. K. McLain, Lightning return stroke current from magnetic and radiation field measurements, Journal of Geophysical Research, 75, 5143–5147, (1970).
    36. van der Velde, O. A., et al., Analysis of the First Gigantic Jet Recorded From the Continental United States, AGU Fall Meeting Abstracts, 41, 07, (2006).
    37. Wu, C. C., et al., Dropsonde observations for typhoon surveillance near the Taiwan region (DOTSTAR): An overview, Bull. Amer. Meteor. Soc, 86, 878-790, (2004).

    下載圖示 校內:2008-07-20公開
    校外:2008-07-20公開
    QR CODE