| 研究生: |
蔡宗元 Tsai, Tsung-Yuan |
|---|---|
| 論文名稱: |
增進發光二極體電流分佈技術之研究 Investigation of Light-emitting Diodes with Improved Current-Spreading Approaches |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 電流分佈 |
| 外文關鍵詞: | current spreading |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們提出兩項關於氮化鎵(GaN)系發光二極體(LEDs)之電流分佈性質的改善方法及製程,量測並深入討論其光電特性之改善結果,另外,並針對磷化鋁鎵銦(AlGaInP)材料系統為基礎的的發光二極體,提出改進其電流分佈性質之有效方法及製程,並深入討論其光電特性之改善結果。
於氮化鎵發光二極體的研究中,首先我們提出以直接歐姆接觸在p型氮化鎵層與氧化銦錫(ITO)界面的製程方法。此研究是利用金(Au)金屬藉由熱退火和蝕刻過程,使其金顆粒在p型氮化鎵表面形成具金屬特性之接觸層,且由於熱退火和蝕刻的過程使得p型氮化鎵表面的鎵(Ga)空缺變多,以至於p型氮化鎵表面的電洞濃度提升,因此在p型氮化鎵層與氧化銦錫透明導電層界面可能會有能帶窄化效應或是穿隧效應的產生。在電性和光性的分析中,我們可以發現順向導通電壓下降且輸出功率明顯提升。另外,在可靠度的分析中,在電流為20毫安培測試下,光衰退的趨勢和未經過金熱退火處理過程所製作出來的元件是一樣的,因此二極體的結構在經過熱退火和蝕刻過程後並未被破壞或是改變。
之後,我們利用階梯型(stair-like)氧化銦錫電流擴散層和p型電流擴散電極(在傳統圓形電極兩旁各拉出一條分支線的電極)來增加電流分佈的面積,此階梯型結構可利用其厚度的差異而造成不同電阻的特性,來提升發光層邊緣流入的電流量,再利用電流走最短路徑之特性,使得流入發光層邊緣的電流直接注入到主動層,減少電流流向電極下方的區域,也因此增加了電流分佈的區域。在電性和光性的分析中,我們可以發現順向導通電壓有明顯的下降,且輸出功率提升也非常明顯。外部量子效率在導通電流(20毫安培)和高電流下皆有明顯的提升。最後,在可靠度分析中,在電流為20毫安培測試下,元件的可靠度衰減程度亦不明顯。
另外,本文並針對磷化鋁鎵銦(AlGaInP)材料為基礎的的發光二極體做電流分佈之研究。我們研究不同種類表面歐姆接觸層對氧化銦錫透明導電層於磷化鎵窗層上的影響,研究發現經由碳摻雜磷化鎵歐姆接觸層相較於習知p型砷化鎵歐姆接觸層,於20毫安培操作下,元件輸出功率可提升11%。
In this thesis, two approaches related to how to promote the current spreading effect and process method improved for GaN-based light-emitting diodes (LEDs) are presented and discussed. In addition, the approach relate to how to promote the current spreading effect and process method improved for AlGaInP-based LEDs are also investigated and discussed.
In respect of research on GaN-based LEDs, we have proposed a good and direct Ohmic contact between ITO and p-type GaN by Au diffused process. After the Au diffused process, the Au atoms layer is exhibited on the surface of p-type GaN. The gallium vacancies are also increased, resulting in an increased free acceptors concentration and reduced resistivity on the p-GaN surface. Therefore, the high hole concentration and formation of metallic surface on the p-GaN surface may result in bandgap narrowing or tunneling effects at p-GaN/ITO interface. It is found that the turn-on voltage and light output power are improved of our studied LED. In addition, the brightness reliability of our studied LED is found to be comparable to the conventional LED.
Then, we increase the current spreading area by using the stair-like ITO transparent layer and current spreading electrode (the circular electrode with two branches). we adjust a uniform ITO current-spreading layer into the stair-like structure where each step exhibits different series resistance, so that the whole current-spreading area could be improved. In addition, the stair-like structure also helps blocking current. We can find out the light output power is significantly increased of our studied LED. Our studied LED also shows 25% improvement on EQE at 20 mA and over 40% enhancement at a higher current region, as compared with conventional LED does. Moreover, the brightness reliability of our studied LED is found to be comparable to the conventional LED.
Finally, we investigated the effect of different Ohmic contact layer structure applied to ITO-assisted on GaP window layer of AlGaInP LEDs. By selecting the C-doped GaP layer as Ohmic contact layer, the light-output power is significantly increased by a factor of 11% than conventional p-GaAs contact layer structure under DC 20-mA operation.
1. K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 321-332, March/April, 2002.
2. D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, “High-brightness AlGaInP light emitting diodes,” IEEE Proc., vol. 85, pp. 1752-1764, 1997.
3. T. Kim, P. O. Leisher, A. J. Danner, R. Wirth, K. Streubel, and K. D. Choquette, “Photonic crystal structure effect on the enhancement in the external quantum efficiency of a red LED,” IEEE Photon. Technol. Lett., vol. 18, pp. 1876–1878, Sep. 2006.
4. X. Y. Sun, R. Bommerna, D. Burckel, A. Frauenglass, N. Fairchild, S. R. J. Bryeck, G. A. Garrett, M. Wraback, and S. D. Hersee, “Defect reduction mechanisms in the nanoheteroexpitaxy of GaN on SiC,” J. Appl. Phys., vol. 95, pp. 1450-1454, 2004.
5. T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal lighting emitting diode,” Appl. Phys. Lett., vol. 84, pp. 466-468, 2004.
6. C. Y. Lee, M. C. Wu, Y. D. Tian, W. H. Wang, W. J. Ho, and T. T. Shi, “Effects of rapid thermal annealing on InAsP/InP strained multiquantum well laser diodes grown by metal organic chemical vapor deposition,” Electron. Lett., vol. 36, pp.1026 -1028, 2000.
7. C. M. Lee, C. C. Chuo, J. F. Dai, X. F. Zheng, and J. I. Chyi, “Temperature dependence of the radiative recombination zone in GaN/InGaN multiple quantum well light emitting diodes,” J. Appl. Phys., vol. 89, pp. 6554-6556, 2001.
8. J. I. Chyi, “MBE growth and characterization of InGaAs quantum dot lasers,” Mater. Sci. Technol B, vol. 75, pp. 121-125, 2000.
9. P. H. Lei, C. C. Lin, W. J. Ho, M. C. Wu, and L. W. Laih, “1.3-μm n-type modulation-doped AlGaInAs/AlGaInAs strain-compensated multiple quantum well laser diodes,” IEEE Trans. Electron Devices, vol. 49, pp. 1129-1135, 2002.
10. P. W. Liu, G. H. Liao, and H. H Lin, “1.3 μm GaAs/GaAsSb quantum well laser grown by solid source molecular beam epitaxy,” Electron. Lett., vol. 40, pp. 177 -179, 2004.
11. W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, S. Y. Cheng, K. B. Thei, and C. Z. Wu, “A novel InGaP/GaAs S-shaped negative-differential-resistance (NDR) switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 44, pp. 520-525, 1997.
12. K. H. Wu, Y. K. Fang, J. J. Ho, W. T. Hsieh, and T. J. Chen, “Novel SiC/Si heterostructure negative-differential-resistance diode for use as switch with high on/off current ratio and low power dissipation,” IEEE Electron Device Lett., vol. 19, pp. 294-296, 1998.
13. D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A double-barrier-emitter triangular-barrier optoelectronic switch,” IEEE J. Quantum Electron, vol. 40, pp. 413- 419, 2004.
14. H. C. Wei, Y. H. Wang, and M. P. Houng, “N-shaped negative differential resistance in a transistor structure with a resistive gate,” IEEE Trans. Electron Devices, vol. 41, pp. 1327-1333, 1994.
15. W. C. Liu, W. C. Wang, H. J. Pan, J. Y. Chen, S. Y. Cheng, K. W. Lin, K. H. Yu, K. B. Thei, and C. C. Cheng, “Multiple-route and multiple-state current-voltage characteristics of an InP/AlInGaAs switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 47, pp. 1553-1559, 2000.
16. W. C. Liu, L. W. Laih, C. Z. Wu, S. Y. Cheng, and J. H. Tsai, “Observation of the multiple negative-differential-resistance of metal-insulator-semiconductor-like structure with step-compositioned InxGa1-xAs quantum wells,” IEEE Electron Device Lett., vol. 18, pp. 129-131, 1997.
17. W. C. Liu, J. H. Tsai, L. W. Laih, C. Z. Wu, K. B. Thei, W. S. Lour, and D. F. Guo, “Heterostructure confinement effect on the negative-differential-resistance (NDR) bipolar transistor,” Superlattices and Microstructures, vol. 17, pp. 445-456, 1995.
18. J. H. Tsai, “Application of an AlGaAs/GaAs/InGaAs heterostructure emitter for a resonant-tunneling transistor,” Appl. Phys. Lett., vol. 75, pp. 1668–1670, 1999.
19. W. C. Liu, L. W. Laih, S. Y. Cheng, W. L. Chang, W. C. Wang, J. Y. Chen, and P. H. Lin, “Multiple negative-differential-resistance (MNDR) phenomena of a metal-insulator-semiconductor-insulator-metal-like (MISIM) structure with step-compositioned InxGa1-xAs quantum wells,” IEEE Trans. Electron Devices, vol. 45, pp. 373-379, 1998.
20. W. C. Liu, D. F. Guo, S. R. Yih, J. T. Liang, L. W. Laih, and G. M. Lyuu, “GaAs-InGaAs quantum-well resonant-tunneling switching device grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 64, pp. 2685-2687, 1994.
21. W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, and Y. H. Wu, “On the improvement of gate voltage swings in δ-doped GaAs/InxGa1-xAs/GaAs pseudomorphic heterostructures,” IEEE Trans. Electron Devices, vol. 40, pp. 1630-1635, 1993.
22. W. H. Chiou, H. J. Pan, R. C. Liu, C. Y. Chen, C. K. Wang, H. M. Chuang, and W. C. Liu, “Characterization of InP/InGaAs double-heterojunction bipolar transistors with tunnelling barriers and composite collector structures,” Semicond. Sci. Technol, vol. 17, pp. 87-92, 2002.
23. W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. H. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, pp. 524-527, 2000.
24. C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chuang, R. C. Liu, C. H. Yen, J. Y. Chen, C. C. Cheng, and W. C. Liu, “DC Characterization of an InP/InGaAs tunneling emitter bipolar transistor (TEBT),” IEEE Trans. Electron Devices, vol. 50, pp. 874-879, 2003.
25. W. S. Lour, “High-gain, low offset voltage, and zero potential spike by InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT),” IEEE Trans. Electron Devices, vol. 44, pp. 346-348, 1997.
26. K. H. Yu, H. M. Chuang, K. W. Lin, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP/InGaAs/GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Devices, vol. 49, pp. 1687-1693, 2002.
27. C. S. Lee, W. C. Hsu, J. C. Huang, Y. J. Chen, and H. H. Chen, “Monolithic AlAs-InGaAs-InGaP-GaAs HRT-FETS with PVCR of 960 at 300K,” IEEE Electron Device Lett., vol. 26, pp. 50-52, 2005.
28. W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Device Lett., vol. 20, pp. 548-550, 1999.
29. W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, pp. 304-306, 1999.
30. H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP/InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Device, vol. 50, pp. 1717-1723, 2003.
31. N. Holonyak, and Bevacqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett., vol. 1, pp. 82-84, 1962.
32. R. A. Logan, and F. K. Reinhart, “GaAs-InGaAs quantum-well resonant-tunneling switching device grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 44, pp. 4172-4174, 1973.
33. W. B. Chen, Y. K. Su, C. L. Lin, H. C. Wang, J. Y. Su, M. C. Wu, S. M. Chen and H. R. Chen, “Oxide Confinned Collector-Up Heterojunction Bipolar Transistors,” Jpn. J. Appl. Phys., Part 1, vol. 42, no. 5A, pp. 2612–2614, 2003.
34. Y. K. Su, W. B. Chen, C. L. Lin, H. C. Wang, S. M. Chen, and K. M. Liang, “Elimination of burn-in effect in carbon-doped InGaP/GaAs HBTs by hydrogen lateral diffusion,” Solid State Electron, vol. 47, pp. 2011-2014, 2003.
35. C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett., vol. 57, pp. 2937-2939, 1990.
36. H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” Appl. Phys. Lett., vol. 58, pp. 1010-1012, 1991.
37. F. A. Kish, F. M. Steranka, D. C. Defevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 2839-2841, 1994.
38. H. P. Maruska, and J. J. Tietjen, “The preparation and properties of Vapor‐Deposited single‐crystal‐line GaN,” Appl. Phys. Lett., vol. 15, pp. 367-369, 1969.
39. J. I. Pankov, E.A. Miller, D. Richman, and J.E. Berkeyheiser, “Electroluminescence in GaN,” Journal of Luminescence, vol. 4, pp. 63-66, 1971.
40. H. P. Maruska, D.A. Stevenson, and J. I. Pankov, “Violet luminescence of Mg-doped GaN,” Appl. Phys. Lett., vol. 22, pp.1003-1006, 1973.
41. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353-355, 1986.
42. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114, 1989.
43. S. Nakamura, M. Kito, K. Hiramatsu, and I.Akasaki, “Reducing reverse-bias current in 450°C-annealed n+p junction by hydrogen radical sintering,” Jan. J. Appl. Phys., vol. 34, pp. L797, 1995.
44. H. P. Maruska, ”A brief history of GaN blue light-emitting diodes,” http://www.sslighting.net/lightimes/features/maruska_blue_led_history.pdf
45. H. C. Casey, Jr. and M. B. Panish: Heterostructure Lasers, Part A: Fundamental Principles (Academic Press, New York), pp. 131–132, 1978.
46. M. S. Shur, “GaN-based devices,” IEEE Electron. Device Lett., vol. 63, pp. 15–18, 2005.
47. Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura,“Dimensionality of excitons in InGaN-based light emitting devices,” Phys. Status Solidi A, vol. 178, pp. 331-336, 2000.
48. J. K. Sheu, J. M. Tsai, S. C. Shei,W. C. Lai, T. C.Wen, C. H. Kou, Y.K. Su, S. J. Chang, and G. C. Chi, “Low-operation voltage of InGaN–GaN light-emitting diodes with Si-doped InGaN–GaN short-period superlattice tunneling contact layer,” IEEE Electron. Device Lett., vol. 22, pp.460-462, 2001.
49. J. K. Sheu, G. C. Chi, and M. J. Jou, “Low-operation voltage of InGaN–GaN light-emitting diodes by using a Mg-doped AlGaN/GaN superlattice,” IEEE Electron Device Lett., vol. 22, pp.160-162, 2001.
50. S. J. Chang, C. H. Kuo, Y. K. Su, L.W.Wu, J. K. Sheu, T. C.Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400 nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes,” IEEE J. Select. Topics Quantum Electron, vol. 8, pp.91-94, 2002.
51. J. K. Sheu, G. C. Chi, Y. K. Su, C. C. Liu, C. M. Chang,W. C. Hung, and M. J. Jou, “Luminescence of an InGaN/GaN multiple quantum wells light-emitting diode”, Solid-State Electron, vol. 44, pp.1055-1058, 2000.
52. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matusshita, H.Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with cleaved facets grown on GaN substrates,” Appl. Phys. Lett., vol. 73, pp. 832-834, 1998.
53. Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang, and J. K. Sheu, “GaN and InGaN metal-semiconductor photodetectors with different schottky contact metals,” Jpn. J. Appl. Phys., vol. 40, pp. 2996-2999, 2001.
54. F. Hide, P. Kozody, S. P. DenBaars, and A. J. Heeger, “White light from InGaN/conjugated polymer hybrid light-emitting diodes,” Appl. Phys. Lett., vol. 70, pp.2664-2666, 1997.
55. J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Chang, and Y. K. Su, “White-light emission from InGaN/GaN multi quantum well light-emitting diodes with Si and Zn co-doped active well layer”, IEEE Photon. Technol. Lett., vol. 14, pp.450-452 , 2002.
56. Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, C. W. Kuo, and S. C. Chen, “InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts,” Solid-State Electron., vol. 47, pp. 849-853, 2003.
57. C. Y. Hsu, and W. H. Lan, “The Influences of Contact Interfaces Between the Indium Tin Oxide-Based Contact Layer and GaN-Based LEDs,” Journal of The Electrochemical Society, vol. 153, G475-G478, 2006.
58. S. Y. Kim, H. W. Jang, and J. L. Lee, “High-brightness GaN-based light-emitting diode with indium tin oxide based transparent ohmic contact,” Journal of Vacuum Science & Technology B., vol. 22, pp. 1851-1857, 2004.
59. S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Enhanced output power of InGaN–GaN light-emitting diodes with high-transparency nickel-oxide–indium-tin-oxide ohmic contacts,” IEEE Photonics Technology Lett., vol.15, pp. 646-648, 2003.
60. C. H. Lin, D. L. Hibbard, A. Au, H. P. Lee, Z. J. Dong, F. J. Szalkowski, J. Chen, and C. Chen, “Low resistance optically transparent contacts to ptype GaN using oxidized Ni/Au and ITO for LED application,” in Proc. MRS., vol. 639, Paper G4.8.1, 2000.
61. B. H. Ong, X. Y., S. C. Tjin , J. Zhang, and H. M. Ng,“Optimised film thickness for maximum evanescent field enhancement of bimetallic film surface plasmon resonance biosensor,” Sensors and Actuators B, vol. 114, pp.1028–1034, 2006.
62. J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN,” J. Appl. Phys., vol. 83, pp.3172-3175, 1998.
63. K. J. Reddy, V. R. Reddy, and P. N. Reddy, “Thermal annealing behaviour on Schottky barrier parameters and structural properties of Au contacts to n-type GaN,” J Mater Sci: Mater Electron, vol. 19, pp.333–338, 2008.
64. Y. Igasaki, and H. Saito, “The effects of zinc diffusion on the electrical and optical properties of ZnO-Al films prepared by RF reactive sputtering,” Thin Solid Films, vol. 199, pp. 223-230, 1991.
65. C. H. Yen, Y. J. Liu, K. K. Yu, P. L. Lin, T. P. Chen, L. Y. Chen, T. H.Tsai, and W. C. Liu, “On an AlGaInP-based light-emitting diode with an ITO direct Ohmic contact structure,” IEEE Electron Device Lett., vol. 30, pp. 359–361, 2009.
66. Y. J. Liu, C. H. Yen, K. H. Yu, P. L. Lin, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “Characteristics of an AlGaInP-Based Light Emitting Diode With an Indium-Tin-Oxide (ITO) Direct Ohmic Contact Structure,” IEEE J. Quantum Electron, vol. 46, no. 2, pp. 246-252, 2010.
67. C. C. Chen, T. H. Hsueh, Y. S. Ting, G. C. Chi, C. A. Chang, and S. C. Wang, “Thermal annealing effects on the optical gain of InGaN/GaN quantum well structures,” Solid State Electron, vol. 47, pp. 575–578, 2003.
68. C.T. Lee, and H.W. Kao, “Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN,” Appl. Phys. Lett., vol. 76, no.17, pp. 2364–2366, 2000.
69. E. Oh, B. Kim, H. Park, and Y. Park , “Effect of surface layer on optical properties of GaN and In×Ga12×N upon thermal annealing,” Appl. Phys. Lett., vol. 73, no. 13, pp. 1883–1885, 1998.
70. M.C.Y. Chan, E.M.T. Cheung, and E.H. Li , “A tunable blue light emission of InGaN:GaN quantum well through thermal interdiffusion,” Mater. Sci. Eng., B 59, pp. 283–287, 1999.
71. G. Li, S.J. Chua, J.H. Teng, W. Wang, Z.C. Feng, and Y.H. Huang et al., “Blueshift of In0.2Ga0.8N/GaN single quantum well band gap energy by rapid thermal annealing,” J. Vac. Sci. Technol. B 17, no. 4, pp. 1507–1509, 1999.
72. C.C. Chou, C.M. Lee, and J.I. Chyi , “Interdiffusion of In and Ga in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol.78, no. 3, pp. 314–316, 2001.
73. S. N. Mohammad, “Contact mechanisms and design principles for alloyed Ohmic contacts to p-type GaN, ” PHILOSOPHICAL MAGAZINE, vol. 84, no. 24, 2559–2578, 2004.
74. Hidenori Ishikawa, Setsuko Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and Masanori Murakami , “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J.Appl. Phys., vol. 81, pp.1315-1322, 1997.
75. Kazuhide KUMAKURA, Toshiki MAKIMOTO, and Naoki KOBAYASHI, “Ohmic Contact to p-GaN Using a Strained InGaN Contact Layer and Its Thermal Stability,” Jpn. J. Appl. Phys., vol. 42, pp. 2254–2256, 2003.
76. X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D.Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett., vol. 23, pp.535 – 537, 2002.
77. Shah, Jay M. Li, Y.-L. Gessmann, and Th. Schubert, “Experimental analysis and theoretical model for anomalously high ideality factors (n≫2.0) in AlGaN/GaN p-n junction diodes,” J. Appl. Phys., vol. 94, pp.2627-2630, 2003.
78. A. R. Riben, and D. L. Feucht, “nGe–pGaAs heterojunctions,” Solid-State Electron, vol. 9, pp. 1055–1065, 1966.
79. S. R. Forrest, M. Didomernico Jr., R. G. Smith, and H. J. Stocker, “Evidence for tunneling in reverse biased III–V photodetector diodes,” Appl. Phys. Lett., vol. 36, pp. 580–582, 1980.
80. J. B. Fedison, T. P. Chow, H. Lu, and I. B. Bhat, “Electrical characteristics of Mg-doped gallium nitride junction diodes,” Appl. Phys. Lett., vol. 72, pp. 2841–2843, 1998.
81. C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” J. Appl. Phys., vol. 92, pp. 2248-2250, 2002.
82. C. C. Liu, Y. H. Chen, M. P. Houng, Y. H. Wang, Y. K. Su, W. B. Chen, and S. H. Chen, “Improved light-output power of GaN LEDs by selective region activation,” IEEE Photon. Technol. Lett., vol. 16, pp. 1444, 2004.
83. C. Y. Hsu, W. H. Lan, and Y. S. Wu, “Effect of thermal annealing of Ni/Au Ohmic contact on the leakage current of GaN based lighting emitting diodes,” Appl. Phys. Lett., vol. 83, no. 12, pp. 2447–2449, 2003.
84. D. S. Li, H. Chen, H. B. Yu, H. Q. Jia, Q. Huang, and J. M. Zhou, “Dependence of leakage current on dislocations in GaN-based light-emitting diodes,” J. Appl. Phys., vol. 96, pp. 1111-1114, 2004.
85. J. Lin, “Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-GaN from current–voltage measurements,” Appl. Phys. Lett., vol. 86, pp.122109-1-122109-3, 2005.
86. S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrodes Electrochem,” Solid-State Lett., vol. 10, H175-H180 ,2007
87. H. Kim, J. Cho, J. W. Lee, S. Yoon, H. Kim, C. Sone, Y. Park, and T. Y. Seong, “Consideration of actual current-spreading length of GaN-based light emitting diodes for high-efficiency design,” IEEE J. Quantum Electron, vol. 43, pp.625-632, 2007.
88. Y. Nakano, and T. Jimbo, “Electrical characterization of acceptor levels in Mg-doped GaN,” J. Appl. Phys., vol. 92, pp. 5590-5592, 2002.
89. X. Guo, and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grow on insulating substrates,” App. Phys. Lett., vol. 78, pp. 3337-3339, 2001.
90. J. S. Jang, D. Kim, and T. Y. Seong, “Low turn-on voltage and series resistance of polarization-induced InGaN-GaN LEDs by using p-InGaN/p-GaN superlattice,” IEEE Photon. Technol. Lett., vol. 18, pp. 1536-1538, 2006.
91. J. S. Jang, S. J. Sohn, D. Kim, and T. Y. Seong,“Formation of low-resistance transparent Ni/Au ohmic contacts to a polarization field-induced p-InGaN/GaN superlattice,” Semicond. Sci. Technol., vol. 2, pp.L37-L39, 2006.
92. H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, and Y. Park, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry, ” Appl. Phys. Lett., vol. 91, pp.023510-1-023510-3, 2007.
93. X. Guo, and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys., vol. 90, pp. 4191-4195, 2001.
94. H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, “Modeling of a GaN-based light-emitting diode for uniform current spreading,” Appl. Phys. Lett., vol. 77, pp. 1903-1904, 2000.
95. H. Kim, S. J. Park, and H. Hwang, “Effects of current spreading on the performance of GaN-based light-emitting diodes,” IEEE Trans. Electron. Devices, vol. 48, pp. 1065-1069, 2001.
96. H. Kim, S. J. Park, H. Hwang, and N. M. Park, “Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs,” Appl. Phys. Lett., vol. 81, pp. 1326-1328, 2002.
97. R. M. Lin, J. C. Li, Y. L. Chou, and M. C. Wu, “Using the taguchi method to improve the brightness of AlGaInP MQW LED by wet oxidation,” IEEE Photonics Technol. Lett., vol. 18, pp. 1642-1644, 2006.
98. K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Select. Topics Quantum Electron, vol. 8, no. 2, pp. 321-332, 2002.
99. J. Y. Su, H. C. Wang, W. B. Chen, S. M. Chen, M. C. Wu, H. H. Chen, and Y. K. Su, “Improved 634 nm MQW AlGaInP LEDs performance with novel tensile strain barrier reducing layer,” IEEE Trans. Electron Devices, vol. 50, pp. 2388-2392, 2003.
100. J. Y. Su, W. B. Chen, M. C. Wu, Y. K. Su, and K. M. Liang, “High reliability of AlGaInP light-emitting diodes with tensile strain barrier-reducing layer,” IEEE Photonics Technol. Lett., vol. 16, pp. 30-32, 2004.
101. H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP-GaAs visible light-emitting diodes,” Appl. Phys. Lett., vol. 58, pp. 1010-1012, 1991.
102. S. C. Hsu, D. S. Wuu, X. Zheng, and R. H. Horng, “Electron-beam and sputter-deposited indium–tin oxide omnidirectional reflectors for high-power wafer-bonded AlGaInP light-emitting diodes,” J. Electrochem. Soc., vol. 156, pp. H281-H284, 2009.
103. R. M. Perk, J. Kettle, A. Porch, and D. V. Morgan, “Monte carlo simulation of indium tin oxide current spreading layers in light emitting diodes,” Thin Solid Films, vol. 515, pp. 8660-8663, 2007.
104. J. F. Lin, M. C. Wu, M. J. Jou, C. M. Chang, B. J. Lee, and Y. T. Tsai, “Highly reliable operation of indium tin oxide AlGaInP orange light-emitting diodes,” Electron. Lett., vol. 30, pp. 1793-1794, 1994.
105. G. B. Stringfellow, and M. G. Craford, “High brightness light-emitting diodes,” Semiconductors and Semimetals, New York, Academic, 1997, vol. 48.
106. C. H. Yen, Y. J. Liu, K. K. Yu, P. L. Lin, T. P. Chen, L. Y. Chen, T. H. Tsai, and W. C. Liu, “On an AlGaInP-based light-emitting diode with an ITO direct Ohmic contact structure,” IEEE Electron Device Lett., vol. 30, pp. 359-361, 2009.
107. M. Meneghini, L. R. Trevisanello, G. Meneghesso, and E. Zanoni, “A review on the reliability of GaN-based LEDs,” IEEE Trans. Device Mater. Reliab., vol. 8, pp. 323-331, 2008.
108. O. Pursiainen, N. Linder, A. Jaeger, R. Oberschmid, and K. Streubel, “Identification of aging mechanisms in the optical and electrical characteristics of light-emitting diodes,” Appl. Phys. Lett., vol. 79, pp. 2895-2897, 2001.
109. S. C. Hsu, D. S. Wuu, X. Zheng, R. H. Horng, and J. Y. Su, “High-performance AlGaInP/GaAs light-emitting diodes with a carbon-doped GaP/indium–tin oxide contact layer,” Jpn. J. Appl. Phys., vol. 47, pp. 7023-7025, 2008.
110. C. H. Yen, Y. J. Liu, N. Y. Huang, K. H. Yu, T. P. Chen, L. Y. Chen, T. H. Tsai, C. Y. Lee, and W. C. Liu, “A new AlGaInP multiple-quantum-well light-emitting diode with a thin carbon-doped GaP contact layer structure,” IEEE Photonics Technol. Lett., vol. 20, pp. 1923-1925, 2008.
校內:2015-07-22公開