| 研究生: |
傅子恩 Fu, Zi-En |
|---|---|
| 論文名稱: |
以山崩崩塌比變異對崩塌與降雨之關聯性分析 Correlation Analysis of Landslide to the Rainfall with Variation of Landslide Ratio |
| 指導教授: |
余騰鐸
Yu, Teng-To |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 崩塌比 、年雨量 、崩塌影響因子 、相關係數 |
| 外文關鍵詞: | Landslide ratio, Annual rainfall, Landslide factor, Correlation coefficient |
| 相關次數: | 點閱:163 下載:80 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣特殊的地理位置與氣候條件,地震、颱風與強降雨容易引致山崩、地滑及土石流等災害,導致許多的大規模崩塌事件,因此,找出山崩發生時崩塌潛勢較高的地區,並加以防範以減少災害發生及損失是重要的議題。本研究以北中南三區為例,透過崩塌影響因子與崩塌比,了解不同區域之崩塌特性,藉由歷年之崩塌比與年雨量進行相關性討論,並搭配降雨及地震事件,討論何者對崩塌的影響較大及變異性,最後探討說明崩塌比與年雨量之相關性及相關可能原因,以作為崩塌預測之初步探討。
本研究結果發現,桃園市復興區之高程「0 m- 500 m」、坡度「31°-40°」、坡向「67.5°-112.5°」及岩性「板岩」處;南投縣國姓鄉之高程「1001m- 1500 m」、坡度「0°-10°」、坡向「112.5°-157.5°」及岩性「河階與河床堆積層」處;屏東縣來義鄉之高程「2001 m- 2500 m」、坡度「71°-80°」、坡向「157.5°-202.5°」處之崩塌比與歷年年雨量相關性最高,而屏東縣來義鄉岩性分類之崩塌比與歷年年雨量並無顯著相關性。透過降雨及地震事件對崩塌比進行比較,不論位處北中南何處,降雨事件造成崩塌之影響皆比地震事件造成崩塌之影響大,且在相近年雨量下,越接近現今年份之崩塌比越高。將雨量校正後,崩塌比仍不同,原因為本研究之山崩針對大區域及長時間範圍之比對,並非單一山崩之力學研究,屬於通則,在條件無分類詳細的情況下,降雨造成的山崩相關性便會較低,相關係數僅在0.5以下,其原因包含山崩有時間因素、整治差異、降雨強度、地震事件影響等因素。
Taiwan's unique geographical location and climate conditions make it susceptible to natural disasters like earthquakes, typhoons, and heavy rainfall, which can lead to hazards such as landslides, mudslides, and debris flows. Consequently, identifying regions with higher landslide susceptibility during such events and implementing preventive measures to mitigate disasters and reduce losses is of paramount importance. This study focuses on the northern, central, and southern regions of Taiwan. By examining landslide factors and landslide ratios, it aims to understand the distinct characteristics of landslides in different areas. It explores the correlation between historical landslide ratios and annual rainfall, considers the impacts of rainfall and seismic events, and discusses their varying influences on landslides. Finally, the study investigates and explains the correlation and potentiality between landslide ratios and annual rainfall, serving as an initial exploration into landslide prediction.
The results of this study indicate that the highest correlation between landslide ratio and annual rainfall was observed for specific conditions in different regions: for Fuxing District in Taoyuan City, it was at elevations of "0 m- 500 m," slope inclinations of "31°-40°," and aspects of "67.5°-112.5°" for rock type "shale"; for Guoxing Township in Nantou County, it was at elevations of "1001 m- 1500 m," slope inclinations of "0°-10°," and aspects of "112.5°-157.5°" for rock type "alluvial deposits and riverbed sediments"; and for Liyi Township in Pingtung County, it was at elevations of "2001 m- 2500 m," slope inclinations of "71°-80°," and aspects of "157.5°-202.5°." However, no significant correlation was found between the rock type classification of Liyi Township and annual rainfall. Comparing the impacts of rainfall and seismic events on landslide ratios revealed that rainfall events consistently had a greater influence on landslides than seismic events, and as annual rainfall amounts approached the present year, landslide ratios tended to increase. After rainfall correction, the variations in landslide ratios remained, attributed to the study's broad scope covering large areas and long time spans, rather than focusing on individual landslides. This generality leads to lower correlations in the absence of detailed classification, with correlation coefficients remaining below 0.5. Factors contributing to this include the temporal aspect of landslides, differences in mitigation measures, rainfall intensity, and the influence of seismic events.
1. 小出博(1955),山崩れ,日本:古今書院。
2. 吳佐川(1992),台灣地區崩塌地區域特性之研究,國立台灣大學森林學系碩士論文。
3. 呂政諭(2000),地震與颱風作用下阿里山地區公路邊坡崩壞特性之研究,國立成功大學土木工程學系碩士論文。
4. 李三畏(1984),台灣崩塌問題探討,地工技術,第7期,43-79。
5. 李佩玲(2006),以遙測影像實施大尺度變異點自動化比對與整治績效評估,國立成功大學資源工程學系博士論文。
6. 李馨慈(2010),重大地震地表擾動衰減特性於震後高強度降雨之山崩潛勢分析,國立成功大學資源工程學系博士論文。
7. 李錫堤(2011),草嶺大山崩之地質與地形演變,中華水土保持學報,第42卷,第4期,325-335。
8. 李品毅(2021),莫拉克颱風後高屏溪流域崩塌地多時序變異性分析,國立成功大學地球科學系碩士論文。
9. 李秉宸(2022),重大地質災害山崩崩塌比時空變異趨勢分析,國立成功大學資源工程學系碩士論文。
10. 沈哲緯、吳秋雅、林彥享、鄭錦桐、陳建宏、邵國士、紀宗吉、張閔翔(2009),運用多變量統計進行台灣中部地區之斜坡單元豪雨誘發山崩潛勢分析,中興工程季刊,第103期,25-34。
11. 林慶偉、謝正倫、王文能(2002),集集地震對中部災區崩塌與土石流之影響,2002台灣之活動斷層與地震災害研討會。
12. 林美聆、黃紀禎、高贈智、王國隆(2009),集集地震邊坡滑動門檻條件,地工技術,第121期,5-14。
13. 洪如江、林美玲、陳天健、王國龍(2000),921集集大地震相關的坡地災害、坡地破壞特性、與案例分析,地工技術,第81期,43-79。
14. 張子瑩(2001),降雨與地震度形成崩塌區位之比較研究,國立台灣大學地理環境資源學研究所碩士論文。
15. 莊光澤(1994),阿里山地區道路邊坡穩定性因子之探討,國立成功大學地球科學系碩士論文。
16. 許煜煌(2002),以不安定指數法進行地震引致坡地破壞模式分析,國立臺灣大學土木工程學研究所碩士論文。
17. 楊智光(2002),地震衍生重要山區道路護坡工程之破壞機制探討分析,國立屏東科技大學土木工程學系碩士論文。
18. 溫振宇(2005),結合地震與颱風因子之山崩模式分析,國立成功大學地球科學研究所碩士論文。
19. 廖軒吾(2000),集集地震誘發之山崩,國立中央大學應用地質研究所碩士論文。
20. 劉守恆(2002),衛星影像於崩塌地自動分類組合之研究,國立成功大學地球科學系碩士論文。
21. 劉守恆(2013),以統計模式解析集集地震對後續降雨觸發崩塌之長期影響,國立成功大學地球科學研究所博士論文。
22. 鄭錦桐、李璟芳、黃春銘、魏倫瑋、黃韋凱、張玉粦、冀樹勇、紀宗吉、林錫宏(2011),強化豪雨引致山崩之即時動態潛勢評估與警戒模式發展,經濟部中央地質調查所。
23. 譚志豪、陳嬑璇、冀樹勇(2009),以定率法評估集水區山崩臨界雨量,中興工程季刊,第105期,5-16。
24. 行政院農業委員會水土保持局、中華水土保持學會(2005),水土保持手冊,行政院農業委員會。
25. Chang, K. T., Chiang, S. H., & Hsu, M. L. (2007), Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression, Geomorphology, 89(3-4), 335-347.
26. Dai, F., Lee, C. (2002), Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 42(3-4), 213-228.
27. Keefer, D. K. (1984), Landslides caused by earthquakes, Geol. Soc. Amer. Bull., 95, 406-421.
28. Koukis, G., Ziourkas, C. (1991), Slope instability phenomena in Greece: a statistical analysis, Bulletin of Engineering Geology and the Environment, 43(1), 47-60.
29. Lumb, P. (1975), Slope failure in Hong Kong, Quarterly Fournal of Engineering Geology, 8, 31-65.
30. Lin, C. W., Liu, S. H., Lee, S. Y., & Liu, C. C. (2006), Impacts of the chi-chi earthquake on subsequent rainfall-induced landslides in Central Taiwan, Engineering Geology, 86(2-3), 87-101.
31. Ming-Wey Huang, Chien-Yuan Chen, Tzu-Hsiu Wu, Chi-Ling Chang, Sheu-Yein Liu, Ching-Yun Kao (2012), GIS-based Evaluation on the Fault Motion-Induced Coseismic Landslides, Joural of Mountain Science, Volume 9, Issue 5, 601-612.
32. Premchitt, F., Brand, E. W., Chen, P. Y. M. (1994), Rain-induced landslides in Hong Kong, Asia Engineer, Fournal of the Hong Kong Institution of Engineers, 43-51.
33. Polemic, M., Sado, F. (1999), The role of rainfall in the landslide hazard: the case of the Avigliano urban area (Southern Apennines, Italy), Engineering Geology, 53, 297-309.
34. Popescu, M. E. (2002), Landslide causal factors and landslide remediatial options, 3rd International Conference on Landslides, Slope Stability and Safety of Infra-Structures.
35. S. Mostafa Mousavi, Babak Omidvar, Fereydon Ghazban, Reza Feyzi (2011), Quantitative risk analysis for earthquake-induced landslides – Emamzadeh Ali, Iran, Engineering Geology, ENGEO-03242, No of Pages 13.
36. Terzaghi, K. (1950), Mechanism of landslides: Harvard University, Department of Engineering.
37. Varnes, D. J. (1978), Slope movement types and processes, Transportation Research Board Special Report, 176, 11-33.
38. Weissel, J. K., and Stark, C. P. (2001), Landslides triggered by the 1999 Mw7.6 Chi Chi earthquake in Taiwan and their relationship to topography, International Geoscience and Remote Sensing Symposium (IGARSS).