| 研究生: |
黃柏霈 Huang, Bo-Pei |
|---|---|
| 論文名稱: |
以反射二次諧波來研究射頻磁控濺鍍成長之同調性鋅與氧化鋅薄膜與量子點 A study of reflective second harmonic generation on coherent Zn/ZnO thin film and dots grown by magnetic RF sputtering |
| 指導教授: |
羅光耀
Lo, Kuang-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 鋅/氧化鋅量子點 、鋅/氧化鋅薄膜 、二次諧波 |
| 外文關鍵詞: | Zn/ZnO dots, Zn/ZnO film, Second harmonic generator |
| 相關次數: | 點閱:95 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
薄膜材料在科技業的運用很廣泛而薄膜成長的初期會影響之後薄膜的品質,同調性量子點與薄膜影響更甚。因此對於材料科學領域而言了解成核初期機制是很重要的。而對於射頻磁控濺射,大部分的成長屬於self-texture 成長。這種成長方式主要與基板無相依。我們的工作主要是利用射頻磁控濺射的方式在Si (111)的基板上長出同調性量子點/薄膜鋅。藉由負偏壓與氫氣的引入我們成功利用射頻磁控濺射長出同調性量子點薄膜並觀察他與基板之間的應力。由於成長條件極端,所以成長量子點是困難的。利用反射是二次諧波我們可以觀察到同調性鋅的淨偶極矩貢獻。結合同步輻射的光源,成為探討薄膜成長演化的最佳工具。
我們的工作主要探討兩系列的同調性量子點/薄膜鋅。一個是在低溫下成長的薄膜。我們藉由反射式二次諧波與同步輻射光源觀察隨沉積時間變長,薄膜慢慢出現鬆弛現象。另一個是在高溫下成長的量子點。藉由反射式二次諧波與同步輻射光源我們觀察退火過程中鋅與基板之間的反應。我們再次了確認鋅與基板間的鬆弛現象。因此我們的工作不但展示了一項觀察同調性量子點/薄膜應力的有效工具也了解到成核的初期機制。
The thin film materials have widely application in technology industry. The quality of thin film will be influenced at the early stage of thin film growth, especially for coherent growth dot or film. Therefore, to understand the dot or thin film growth at the earlier nucleation stage is important issue in the film growth science. Most rf sputtering deposition, the growth is self-texture growth which leave the constrain by substrate. In this work, strategic rf sputtering method was applied to grow coherent Zn dot/film on Si(111) in order to discuss the strain between dot/film and substrate. We use rf sputtering to growth coherent dot/film with negative bias and hydrogen flux in rf sputtering, however, it is so critical to grow well dot on Si(111) since some tiny parameters will influence the dot formation. Reflective second harmonic generation (RSHG) is developed to non-destructively analyze coherent Zn dot/film growth by the non-cancelled net symmetrical dipole contribution. By comparing with synchrotron XRD experiments, this methodology is justified to be a powerful method, which can be extended to examine growth evolution.
Two series studies on coherent Zn dot/film were discussed in this work. One is coherent ZnO film at lower substrate temperature. We observed the relaxation process after long-time by inspecting RSHG and synchrotron XRD. Another is coherent Zn/ZnO dots at high substrate temperature. We observed the interaction between dots and substrate during annealing process by inspecting RSHG and synchrotron XRD. The relaxation phenomena can be confirmed by anisotropic RSHG decrease and the peak shift of Zn-Si mixture. Above works not only present us a effective tools to realize the strain science of coherent dot/film but also give a strain mechanism in dot/ultra-thin film system which is helpful to realize the knowledge of earlier nucleation stage.
1. L.B.Freund and S.Suresh, “ Thin Film Materials ” (2008)
2. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).
3. C. Ratsch and J. A. Venables, Sci. Technol. A 21 (5), 96 (2003).
4. R. Behrisch, “Sputtering by Particle bombardment,” (1981)
5. R. Behrisch and W. Eckstein, “ Sputtering by Particle bombardment: Experiments and Computer Calculations from Threshold to Mev Energies,” (2007)
6. Zhong Lin Wang, J. Phys. Condens. Matter 16, 829–858 (2004).
7. J. D. Ye, S. L. Gu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu and Y. D. Ye, Apple. Phys. Lett. 88, 101905 (2006).
8. Hong Qiu, Gyorgy Sfifrfin, Bela Pecz, Peter B. Barna , Akio Kosuge, Hisashi Nakai, Shigemi Yugo and Mituru Hashimoto, Thin Solid Film 229,107-112 (1993).
9. Y. H. Liang, J. H. Huang, N. C. Chang and C. P. Liu, Crystal Growth and Design 9, 2021 (2009).
10. M. Sano, K. Miyamoto, H. Kato, T. Yao, J. Appl. Phys., 95, 5527 (2004).
11. Duanming Zhang, Li Guan, Zhihua Li, Guijun Pan, Xinyu Tan and Li Li, Applied Surface Science 253, 874-880 (2006).
12. Zhang Can, Ding Wanyu, Wang Hualin, Chai Weiping and Ju Dongying, Journal of Environmental Sciences 21, 741-744 (2009).
13. B. G. Orr, D. Kessler, C. W. Snyder and L. Sander, Europhysics Lett 19, 33-38 (1992).
14. C. Ratsch, P. Smilauer, D. D. Vvedensky and A. Zangwill, J. Phys. I France 6, 575-581 (1996).
15. W. A. Jesser and D. Kuhlmann-Wilsdorff, Phys. Status Solidi 19, 95 (1967)
16. D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars and P. M. Petroff, Appl. Phys. Lett.63 (23), 3203 (1993).
17. Robert W. Boyd, “ Nonlinear Optics 3e ” (2008).
18. K. Y. Lo and Y. J. Huang, Apple. Phys. Lett. 90, 161904 (2007).
19. K. Y. Lo, S. C. Lo, C. F. Yu, T. Tite, J. Y. Huang, Appl. Phys. Lett. 92, 091909 (2008).
20. Young-Kyu Han Chem. Chem. Phys. 13, 21282–21287 (2011).
校內:2019-07-29公開