簡易檢索 / 詳目顯示

研究生: 黃柏霈
Huang, Bo-Pei
論文名稱: 以反射二次諧波來研究射頻磁控濺鍍成長之同調性鋅與氧化鋅薄膜與量子點
A study of reflective second harmonic generation on coherent Zn/ZnO thin film and dots grown by magnetic RF sputtering
指導教授: 羅光耀
Lo, Kuang-Yao
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 65
中文關鍵詞: 鋅/氧化鋅量子點鋅/氧化鋅薄膜二次諧波
外文關鍵詞: Zn/ZnO dots, Zn/ZnO film, Second harmonic generator
相關次數: 點閱:95下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜材料在科技業的運用很廣泛而薄膜成長的初期會影響之後薄膜的品質,同調性量子點與薄膜影響更甚。因此對於材料科學領域而言了解成核初期機制是很重要的。而對於射頻磁控濺射,大部分的成長屬於self-texture 成長。這種成長方式主要與基板無相依。我們的工作主要是利用射頻磁控濺射的方式在Si (111)的基板上長出同調性量子點/薄膜鋅。藉由負偏壓與氫氣的引入我們成功利用射頻磁控濺射長出同調性量子點薄膜並觀察他與基板之間的應力。由於成長條件極端,所以成長量子點是困難的。利用反射是二次諧波我們可以觀察到同調性鋅的淨偶極矩貢獻。結合同步輻射的光源,成為探討薄膜成長演化的最佳工具。
    我們的工作主要探討兩系列的同調性量子點/薄膜鋅。一個是在低溫下成長的薄膜。我們藉由反射式二次諧波與同步輻射光源觀察隨沉積時間變長,薄膜慢慢出現鬆弛現象。另一個是在高溫下成長的量子點。藉由反射式二次諧波與同步輻射光源我們觀察退火過程中鋅與基板之間的反應。我們再次了確認鋅與基板間的鬆弛現象。因此我們的工作不但展示了一項觀察同調性量子點/薄膜應力的有效工具也了解到成核的初期機制。

    The thin film materials have widely application in technology industry. The quality of thin film will be influenced at the early stage of thin film growth, especially for coherent growth dot or film. Therefore, to understand the dot or thin film growth at the earlier nucleation stage is important issue in the film growth science. Most rf sputtering deposition, the growth is self-texture growth which leave the constrain by substrate. In this work, strategic rf sputtering method was applied to grow coherent Zn dot/film on Si(111) in order to discuss the strain between dot/film and substrate. We use rf sputtering to growth coherent dot/film with negative bias and hydrogen flux in rf sputtering, however, it is so critical to grow well dot on Si(111) since some tiny parameters will influence the dot formation. Reflective second harmonic generation (RSHG) is developed to non-destructively analyze coherent Zn dot/film growth by the non-cancelled net symmetrical dipole contribution. By comparing with synchrotron XRD experiments, this methodology is justified to be a powerful method, which can be extended to examine growth evolution.
    Two series studies on coherent Zn dot/film were discussed in this work. One is coherent ZnO film at lower substrate temperature. We observed the relaxation process after long-time by inspecting RSHG and synchrotron XRD. Another is coherent Zn/ZnO dots at high substrate temperature. We observed the interaction between dots and substrate during annealing process by inspecting RSHG and synchrotron XRD. The relaxation phenomena can be confirmed by anisotropic RSHG decrease and the peak shift of Zn-Si mixture. Above works not only present us a effective tools to realize the strain science of coherent dot/film but also give a strain mechanism in dot/ultra-thin film system which is helpful to realize the knowledge of earlier nucleation stage.

    摘要 i Abstract ii Contents iii Figure Captions vi Table Caption x Chapter 1 Introduction 1 1.1 EPITAXIAL HETEROJUNCTION 1 1.2 THERMAL EQUILIBRIUM AND KINETIC PATHWAY 1 1.3 THE GROWTH BY KINETIC PATHWAY: MAGNETIC RF SPUTTERING 2 1.4 NOVEL ANALYSIS ON COHERENT FILM AND DOT 2 Chapter2 Theory of Thin Film Growth 5 2.1 THE EARLY STAGES OF THIN FILM GROWTH 5 2.2 THE MODE OF THIN FILM 6 2.3 PRINCIPLE OF SPUTTERING 7 2.3.1 RF sputtering 8 2.3.2 Magnetron sputtering 8 2.4 PROPERTIES OF ZINC OXIDE 10 2.5 COMPARE BETWEEN ZN/ZNO/SI (111) STRUCTURE 10 2.6 HOW TO GROW ZN DOTS BY RF MAGNETRON SPUTTERING 11 2.6.1 Sputtering with negative bias 11 2.6.2 Sputtering with hydrogen flux 12 2.7 THE INFLUENCE PARAMETER OF SPUTTERING 12 2.7.1 The influence of target quality 12 2.7.2 The influence of substrate temperature 12 2.7.3 The influence of working pressure 14 2.8 COHERENCE BETWEEN DOTS AND SUBSTRATE:LAYER BY LAYER 15 2.9 COHERENCE BETWEEN DOTS AND SUBSTRATE:FROM LIQUID TO SOLID 16 Chapter 3 Theory of SHG and XRD 17 3.1 INTRODUCTION TO NONLINEAR OPTICS 17 3.1.1 Second-Harmonic Generation 18 3.1.2 Nonlinear susceptibility tensor 19 3.2 SECOND HARMONIC GENERATION (SHG) OF ZNO BULK 20 3.2.1 The SHG result of ZnO thin film by MOCVD 21 3.2.2 The SHG result of ZnO thin film by sputtering 23 3.2.3 The SHG of Zn/ZnO dots 25 3.3 INTRODUCTION TO XRD 27 Chapter4 Experiment 28 4.1 PRODUCTION OF SAMPLE 28 4.1.1 Process of cleaning Si (111) substrate 28 4.1.2 Production of Zn/ZnO dots 29 4.2 THE SETUP OF REFLECTIVE SECOND HARMONIC GENERATION (RSHG) MEASUREMENT 30 4.2.1 Optical measurement system 30 4.2.2 Integration system 31 4.3 THE PROCEDURE OF SAMPLE MEASUREMENT 32 4.3.1 First situation 32 4.3.2 Second situation 32 Chapter 5 Result and discussion 33 5.1 THE CONDITIONS OF COHERENT GROWTH WAY 33 5.1.1 Substrate type 34 5.1.2 Substrate temperature 35 5.1.3 The working pressure 37 5.1.4 The ratio of hydrogen (Ar : H2) 38 5.2 COHERENT ZN/ZNO FILM GROW ON SI (111) 39 5.2.1 The SEM images of different deposition time Zn/ZnO film 39 5.2.1 The synchrotron XRD and in house XRD of Zn/ZnO film 41 5.2.3 The RSHG of Zn/ZnO film 42 5.2.4 The in-house of Zn/ZnO film after half-year 47 5.2.5 The RSHG of Zn/ZnO film after half-year 48 5.3 COHERENT ZN/ZNO DOTS GROW ON SI (111) 50 5.3.1 The SEM images of Zn/ZnO dots 50 5.3.2 The synchrotron XRD of Zn/ZnO dots 51 5.3.3 The RSHG of Zn/ZnO dots 56 Chapter 6 Conclusion 63 Reference 64

    1. L.B.Freund and S.Suresh, “ Thin Film Materials ” (2008)
    2. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).
    3. C. Ratsch and J. A. Venables, Sci. Technol. A 21 (5), 96 (2003).
    4. R. Behrisch, “Sputtering by Particle bombardment,” (1981)
    5. R. Behrisch and W. Eckstein, “ Sputtering by Particle bombardment: Experiments and Computer Calculations from Threshold to Mev Energies,” (2007)
    6. Zhong Lin Wang, J. Phys. Condens. Matter 16, 829–858 (2004).
    7. J. D. Ye, S. L. Gu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu and Y. D. Ye, Apple. Phys. Lett. 88, 101905 (2006).
    8. Hong Qiu, Gyorgy Sfifrfin, Bela Pecz, Peter B. Barna , Akio Kosuge, Hisashi Nakai, Shigemi Yugo and Mituru Hashimoto, Thin Solid Film 229,107-112 (1993).
    9. Y. H. Liang, J. H. Huang, N. C. Chang and C. P. Liu, Crystal Growth and Design 9, 2021 (2009).
    10. M. Sano, K. Miyamoto, H. Kato, T. Yao, J. Appl. Phys., 95, 5527 (2004).
    11. Duanming Zhang, Li Guan, Zhihua Li, Guijun Pan, Xinyu Tan and Li Li, Applied Surface Science 253, 874-880 (2006).
    12. Zhang Can, Ding Wanyu, Wang Hualin, Chai Weiping and Ju Dongying, Journal of Environmental Sciences 21, 741-744 (2009).
    13. B. G. Orr, D. Kessler, C. W. Snyder and L. Sander, Europhysics Lett 19, 33-38 (1992).
    14. C. Ratsch, P. Smilauer, D. D. Vvedensky and A. Zangwill, J. Phys. I France 6, 575-581 (1996).
    15. W. A. Jesser and D. Kuhlmann-Wilsdorff, Phys. Status Solidi 19, 95 (1967)
    16. D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars and P. M. Petroff, Appl. Phys. Lett.63 (23), 3203 (1993).
    17. Robert W. Boyd, “ Nonlinear Optics 3e ” (2008).
    18. K. Y. Lo and Y. J. Huang, Apple. Phys. Lett. 90, 161904 (2007).
    19. K. Y. Lo, S. C. Lo, C. F. Yu, T. Tite, J. Y. Huang, Appl. Phys. Lett. 92, 091909 (2008).
    20. Young-Kyu Han Chem. Chem. Phys. 13, 21282–21287 (2011).

    無法下載圖示 校內:2019-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE