| 研究生: |
吳邱丞佐 Wu-Chiu, Cheng-Tso |
|---|---|
| 論文名稱: |
複合材質連接面形狀對熱通量影響之研究 The Research on the Effect of Shap of Interface to Heat Flux for a composite material |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 拉凡格式法 、複合材質 、界面形狀 、熱通量 |
| 外文關鍵詞: | Thermal tomography problem, Interfacial geometry |
| 相關次數: | 點閱:137 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文透過拉凡格式法(Levenberg-Marquardt Method)配合B-spline surface控制點方法與套裝軟體CFD-ACE+的結合,配合模型底面溫度值為參考,來探討複合材質界面形狀變化對散熱率的影響。
本論文有兩個主題。在第二章中,吾人以套裝軟體CFD-ACE+為基礎,利用拉凡格式法配合B-spline surface控制點來設計二區複合材料之界面幾何形狀 (即一組界面形狀,r(x,y,z)) 希望能在相同體積的條件下計算出希望的散熱率。在第三章中,吾人亦以套裝軟體CFD-ACE+為基礎,來探討三區複合材料之未知界面幾何形狀(即二組未知界面形狀r1(x,y,z)及r2(x,y,z) ) 對於散熱率的影響。
本研究比較著重於使用拉凡格氏法搭配B-Spline自由的控制連接面的變化,相較於其他研究對於連接面的改變是設定參數限制其自由度的方式,有較大的差異。在本研究中有分兩個部分,分別是固定連接面邊界與不固定連接面邊界兩種,藉此比較哪一種狀況可以得到較大的熱通量。此外,吾人亦假設兩區或三區複合材料之界面為良好接觸(perfect thermal contact),故求解時需利用兩材料交界面上溫度相同且達到熱平衡之原理來求解。
在本文中,吾人對於兩區及三區的範例都依序針對不同熱通量增加對連接面形狀影響來做討論,並且成功計算出各種不同情況下可以II增加熱通量最大值的幾何連接面形狀。希望本論文之發表,能給予相關領域研究提供一個解決問題的方向。
A shape design problem or inverse geometry problem, in determining the optimal interfacial geometry for a three-dimensional multiple region domains is examined in this study based on the Levenberg-Marquardt method (LMM), B-Spline surface, the commercial code CFD-ACE+ and the desired system heat flux.
There are two themes in the present thesis. In chapter two, different desired system heat fluxes are considered in the numerical test cases to justify the validity of the present algorithm in solving the three-dimensional two-layer shape design problems, i.e. estimate one irregular interfacial surfaces r1(x,y,z). In chapter three, the objective is to estimate simultaneously two irregular interfacial surfaces r1(x,y,z) and r2(x,y,z) in a three-layer-structure.
Finally it is concluded that when the boundary control points of interfacial surface are free to move, maximum system heat flux can be obtained by the present algorithm. We also learned that different thermal conductivity will lead to different results. When the smaller thermal conductivities are placed in Ω1 and Ω3, maximum system heat flux can be obtained by the present algorithm. Besides, the boundary conditions along the interface are assumed perfect thermal contact conditions.
In this thesis, different desired system heat flux in a two-layer and three-layer structures are considered and the correspondent shapes of interfacial surfaces are determined. Hopefully, this technique can be of some contribution in the field of shape design problem in the future.
1. C. H. Huang, and J. Y. Yan, An Inverse Problem in Simultaneously Measuring Temperature Dependent Thermal Conductivity and Heat Capacity, Int. J. Heat and Mass Transfer, 38 (1995), 3433-3441.
2. O. M. Alifanov, Solution of an Inverse Problem of Heat Conduction by Iteration Methods. J. of Engineering Physics, 26 (1974), 471-476.
3. C. H. Huang and S. C. Cheng, A Three-Dimensional Inverse Problem of Estimating the Volumetric Heat Generation for A Composite Material, Numerical Heat Transfer, Part A, 39 (2001), 383–403.
4. T. Burczynski, W. Beluch, A. Dlugosz, W. Kus, M. Nowakowski, and P. Orantek, Evolutionary Computation in Optimization and Identification, Comput. Assist. Mech. Eng. Sci., 9 (2002), 3–20.
5. T. Burczinski, J. H. Kane, and C. Balakrishna, Shape Design Sensitivity Analysis via Material Derivative-Adjoint Variable Technique for 3D and 2D Curved Boundary Elements, Int. J. Numer. Meth. Eng., 38 (1995), 2839–2866.
6. H. M Park, and H. J. Shin, Shape Identification for Natural Convection Problems using the Adjoint Variable Method, Journal of Computational Physics, 186 (2003), 198-211.
7. C. H. Cheng, and M. H. Chang, A Simplified Conjugate-Gradient Method for Shape Identification Based on Thermal Data, Numerical Heat Transfer; Part B, 43 (2003), 489-507.
8. E. Divo, A. J. Kassab and F. Rodriquez, An efficient singular superposition technique for cavity detection and shape optimization, Numerical Heat Transfer Part B, 46 (2004), 1-30.
9. C. H. Huang and B. H. Chao, An Inverse Geometry Problem in Identifying Irregular Boundary Configurations, Int. J. Heat and Mass Transfer, 40 (1997), 2045-2053.
10. C. H. Huang and C. C. Tsai, A Transient Inverse Two-Dimensional Geometry Problem in Estimating Time-Dependent Irregular Boundary Configurations, Int. J. Heat and Mass Transfer, 41 (1998), 1707-1718.
11. C. H. Huang, C. C. Chiang and H. M. Chen, Shape Identification Problem in Estimating the Geometry of Multiple Cavities, AIAA, J. Thermophysics and Heat Transfer, 12 (1998), 270-277.
12. C. H. Huang and T. Y. Hsiung, An Inverse Design Problem of Estimating Optimal Shape of Cooling Passages in Turbine Blades, Int. J. Heat and Mass Transfer (SCI &EI paper), 42, No. 23(1999), 4307-4319.
13. C. H. Huang and H. M. Chen, An Inverse Geometry Problem of Identifying Growth of Boundary Shapes in A Multiple Region Domain, Numerical Heat Transfer; Part A, 35 (1999), 435-450.
14. C. H. Huang and M. T. Chaing, A Transient Three-Dimensional Inverse Geometry Problem in Estimating the Space and Time-Dependent Irregular Boundary Shapes, Int. J. Heat and Mass Transfer, 51 (2008), 5238–5246.
15. C. H. Huang and C. A. Chen, A Three-Dimensional Inverse Geometry Problem in Estimating the Space and Time-Dependent Shape of An Irregular Internal Cavity, Int. J. Heat and Mass Transfer, 52 (2009), 2079–2091.
16. C. H. Huang and C. C. Shih, A Shape Identification Problem in Estimating Simultaneously Two Interfacial Configurations in a Multiple Region Domain, Applied Thermal Engineering, 26 (2006), 77–88, 2006.
17. J. V. C. Vargas, A. Bejan, The Optimal Shape of the Interface between Two Conductive Bodies with Minimal Thermal Resistance, Journal of Heat Transfer, 124 (2002) 1218–1221.
18. Chen, PF; Huang, CH, An inverse hull design approach in minimizing the ship wave, OCEAN ENGINEERING,31(2004) 1683-1712
19. O. M. Alifanov, Inverse Heat Transfer Problem, Springer-Verlag, Berlin Heidelberg, 1994.
20. L. S. Lasdon, S. K. Mitter, and A. D. Warren, The Conjugate Gradient Method for Optimal Control Problem, IEEE Transactions on Automatic Control, AC-12 (1967), 132-138.
21. IMSL Library Edition 10.0, User's Manual: Math Library Version 1.0, IMSL, Houston, TX, 1987
22.CFD-ACE+ user’s manual, ESI-CFD Inc. 2005