研究生: |
潘誌煌 Pan, Chih-Huang |
---|---|
論文名稱: |
以電化學沉積法製備氧化亞銅/氧化鋅之p-n型異質接合奈米線 Fabrication of p-Cu2O/n-ZnO Heterojunction Nanorod by Electrodeposition |
指導教授: |
黃肇瑞
Huang, Jow-Lay |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 氧化鋅 、多孔氧化鋁膜板 、氧化亞銅 、異質接合奈米線 |
外文關鍵詞: | ZnO, porous alumina membrane, Cu2O, heterojunction nanorod |
相關次數: | 點閱:56 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此研究中,我們利用兩次電化學沉積法在陽極氧化鋁膜板中沉積氧化亞銅與氧化鋅之殼層異質接合奈米線。為了避免累積的氫氣妨礙電化學沉積,我們選擇利用孔洞大小介於100~140 nm的氧化鋁作為輔助模板。第一次沉積為控制電流密度下沉積金屬銅奈米線,利用XRD圖譜分析確定在每平方公分5毫安培之電流密度的沉積條件下有金屬銅在氧化鋁膜板中沉積。經由TEM的分析發現,隨著沉積電流密度的增加,其金屬銅之結晶性也有提升。當電流密度提高至20mA/cm2時,可在氧化鋁膜板中形成單晶之金屬銅奈米線。
進行第二次沉積前,我們利用氫氧化納移除部分氧化鋁膜板,以增加電極與電解質的接觸面積。第二次沉積是利用銅奈米線作為電極沉積金屬鋅,形成銅/鋅之複合奈米線。
最後,我們進行400 oC之退火處理將銅/鋅之複合奈米線氧化,形成氧化亞銅/氧化鋅之異質接合奈米線。氧化亞銅/氧化鋅之異質接合奈米線之平均長度約為7 um,而其直徑約為140 nm。
In this research, we used two-step electrochemical deposition to synthesize the Cu2O/ZnO core-shell heterojunction nanorod in the porous alumina membrane. We used the porous alumina membrane with pore sizes in the range from 100 to 140 nm as the template in order to avoid the hydrogen accumulated, which will prejudiced the electrochemical deposition. The first deposition was controlled the current density of deposition to deposit the copper metal nanowire, and when the deposition conditions of the current density was 5mA/cm2, the copper were deposited in the porous alumina membrane which determined from X-ray diffraction (XRD) patterns. By the TEM analysis, we found the crystalline of copper will improved with increasing the current density of deposition. When the current density was increased to 20mA/cm2, the single crystal copper nanowires were synthesized in the porous alumina membrane.
Before the second deposition, we used the NaOH to remove the alumina template, in order to increase the contact area of the electrode and electrolyte. The second deposition used the copper nanowire as the electrode to deposit the zinc, the formation of Cu / Zn heterojunction nanowires.
Finally, we annealed the Cu/Zn heterojunction nanowires at 400 oC to syn-thesize the Cu2O/ZnO heterojunction nanowires.The average length and average of the Cu2O-ZnO heterojunction nanowire were 7 um and 140 nm.
[1] F. Qian, Y. Li, S. Gradeak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, C. M. Lieber, Nat. Mater. , 7, 701 (2008)
[2] J. Wang, N. Du, H. Zhang, J. Yu, D. Yang, accept in J. Mater. Chem. (2011)
[3] Y. F. Zhu, G. H. Zhou, H. Y. Ding, A. H. Liu, Y. B. Lin, and Y. W. Dong, Superlattices and Microstructure, 50, 549 (2011)
[4] Y. C. Kong, D. P. Yu, Applied Physics Letters, 78, 407 (2001).
[5] Y. J. Zhang, Q. Zhang, Y. B. Li, N. L. Wang, J. Zhu, Solid State Communications, 115, 51 (2000).
[6] A. A. Setlur, J. M. Lauerhaas, Applied Physics Letters, 345 (1996).
[7] A. Z. Jin, Y. G. Wang, Z. Zhang, Journal of Crystal Growth, 252, 167 (2003).
[8] P. Aranda, J. M. Garcıa, Journal of Magnetism and Magnetic Materials, 249, 214 (2002)
[9] A. Fert, L. Piraux, Journal of Magnetism and Magnetic Materials, 200, 338 (1999).
[10] S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, T. Takahagi, Solid-State Electronics, 43, 1143 (1999).
[11] Y. Zhou, J. Huang, C. Shen, H. Li, Materials Science and Engineering, 335, 260 (2002).
[12] M. S. Gudiksen, J. Lincoln, Nature, 415, 617 (2002).
[13] X. Y. Yuan, T. Xie, G. S. Wu, Y. Lin, G. W. Meng, L. D. Zhang, Physica, 23, 75 (2004).
[14] X. Y. Yuan, G. S. Wu, T. Xie, Y. Lin, G. W. Meng, L. D. Zhang, Solid State Communications, 130, 429 (2004).
[15] L. Li, Y. Zhang, G. Li, L. Zhang, Chemical Physics Letters, 378, 244 (2003).
[16] Y. Zhou, C. Shen, H. Li, 146, 81 (2002).
[17] Y. G. Guo, L. J. Wan, C. F. Zhu, D. L. Yang, D. M. Chen, C. L. Bai, Chem. Mater., 15, 664 (2003).
[18] C. G. Jin, W. F. Liu, C. Jia, X. Q. Xiang, W. L. Cai, L. Z. Yao, X. G. Li, 258, 337 (2003).
[19] A. K. M. Bantu, J. Rivas, G. Zaragoza, M. A. Lopez-Quintela, M. C. Blanco, Journal of Non-Crystalline Solids, 287, 5 (2001).
[20] D. H. Qin, L. Cao, Q. Y. Sun, Y. Huang, H. L. Li, Chemical Physics Letters, 358, 484 (2002).
[21] G. B. Ji, W. Chen, S. L. Tang, B. X. Gu, Z. Li, Y. W. Du, Solid State Communications, 130, 541 (2004).
[22] K. Miyazaki, S. Kainuma, K. Hisatake, T. Watanabe, N. Fukumuro, Electrochemical Acta, 44, 3713 (1999).
[23] Y. K. Su, D. H. Qin, H. L. Zhang, H. Li, H. L. Li, Chemical Physics Letters, 388, 406 (2004).
[24]A. J. Bard, L. R. Faulk, Electrochemical method, Wiley, New York, 21(1980)
[25] R. W. G. Wyckoff, Crystal Structure, Wiley, New York, (1965)
[26] J. M. Zuo, M. O’ Keeffe, J. C. H. Spence, Nature, 401, 49 (1999).
[27] H. S. Potdar, N. Pavaskar, A. Mitra and A. P. B. Sinha, Solar Energy Materials, 4, 291 (1981)
[28] G. K. Paul, Y. Kawa, H. Sato, T. Sakurai, and K. Akimoto, Appl. Phys. Leet., 88, 141901 (2006)
[29] L. Kleinman, K. Mednick, Physical Review B, 21, 1549 (1980)
[30] K. Johnsen, G. M. Kavoulakis, Physical Review Letters, 86, 858 (2001)
[31] Chen Z Z, Shi EW, Zheng Y Q, Li W J, Xiao B, Zhuang J Y, Journal of Crystal Growth, 249, 294 (2003)
[32] C. A. N. Fernando, L. A. A. De. Silva, R. M. Mehra, K. Takahashi, Semiconductor Science and Technology, 16, 433 (2001)
[33] K. H. Yoon, W. J. Choi, D. H. Kang, Thin Solid Films, 372, 205 (2000)
[34] T. Mahalingam, J. S. P. Chitra, S. Rajendran, M. Jayachandran, M. J. Chockalingam, Journal of Crystal Growth, 216, 304 (2000)
[35] W. Siripala, L.D.R.D. Perera, K.T.L. De Silva, J.K.D.S. Jayanetti, I.M. Dharmadasa, Solar Energy Materials & Solar Cells, 251 (1996)
[36] M. Hara, H. Hasei, M. Yashima, S. Ikeda, T. Takata, J. N. Kondo, K. Domen, Applied Catalysis A: General, 190, 35 (2000)
[37] T. Takata, S. Ikeda, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, Applied Catalysis, 200, 255 (2000)
[38] N. Ozer, F. Tepehan, Solar Energy Materials and Solar Cell, 30, 13 (1993)
[39] M. Ristov, G. J. Sinadinovski, M. Mitreski, Thin Solid Films, 167, 309 (1988)
[40] M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N.Kondo, K. Domen, C. Commun, 3, 357 (1998)
[41] R. Abe. M. Higashi, Z. Zou, K. Sayama, Journal of Physical Chemistry, 108, 811 (2004)
[42] G. M. Kavoulakis, A. Mysyrowicz, Physical Review B, 61, 24, 16619 (2000)
[43] Y. Bessekhouad, D. Robert, J. V. Weber, Catalysis Today, 101, 315 (2005)
[44] K. Johnsen,G. M. Kavoulakis, Phys .Rev .Lett., 86, 858 (2001)
[45] M. Schlesinger, M. Paunovic, Electrochemical Society, (2000)
[46] T. J. Hsueh, C. L. Hsu, S. J. Chang, P. W. Guo, J. H. Hsiehc, I. Chend, Scripta Materialia, 57, 53 (2007)
[47] J. Chen, Y. Zhang, B. J. Skromme, K. Akimoto, S. J. Pachuta, Applied Physics, 78, 5109 (1995)
[48] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, Goutam K. Paul, T. Sakurai, Solar Energy, 80, 715 (2006)
[49] S. Ishizuka, S. Kato, S. Okamoto, Y. Akimoto, Journal of Crystal Growth, 237, 616 (2002)
[50] J. Oh, Y. Tak, J. Lee, Electrochemical and Solid-State Letters, 7, 27 (2004)
[51] E. Ko, J. Choi, K. Okamoto, Y. Tak, J. Lee, Chem. Phys. Chem., 7, 1505 (2006)
[52] J. S. Choi, E. S. Ko, J. W. Kang, Y. S. Tak, J. Y. Lee, J. Ind. Eng. Chem., 13, 305 (2007)
[53] R. Inguanta, C. Sunseri, S. Piazza, Electrochemical and Solid-State Letters, 10, 63 (2007)
[54] R. Inguanta, S. Piazza, C. Sunseri, Electrochimica Acta, 53, 6504 (2008)
[55] G. Yue, G. Meng, Q. Xu, B. Chen, M. Fang, Materials Letters, 63, 998 (2009)
[56] Y.M. Shen, Y. T. Shih, S. C. Wang, P. K. Nayka, J. L. Huang, Thin Solid Films, 519, 1687 (2010)
[57] M. Chen, Z. L. Pei, X. Wang, C. Sun, L. S. Wen, J. Vac. Sci. Technol. A, 19, 963 (2001)
[58] Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu,T. Yao, J. Appl. Phys. 84, 3912 (1998)
[59] Z. K. Tang, G. K. L. Wang, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett, 72, 3270 (1998)
[60] Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchilcov, S. Dogan, V. Avrutin, S. J. Cho, H. Morboc, J. Appl. Phys., 98, 041301 (2005)
[61] W. Water, S. Y. Chu, Mater. Letters, 55, 67 (2002)
[62] S. Y. Chu, W. Water, J. T. Liaw, Journal of the European Ceramic Society, 23, 1593 (2003)
[63] 水瑞鐏, 「氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用」, 國立成功大學電機工程學系博士論文, 民國91年。
[64] D. G. Baik, S. M. Cho, Thin Solid films, 354, 227 (1999)
[65] P. Nunes, D. Costa, E. Fortunato, R. Martins, Vacuum, 64, 293 (2002)
[66] L. Yi, Y. Hou, H. Zhao, D. He, Z. Xu, Y. Wang, X. Xu, Displays, 21, 147 (2000)
[67] Y. Igasaki, H. Saito, Thin Solid Films, 199, 223 (1991)
[68] M. T. Young, S. D. Keun, Thin Solid Films, 410, 8 (2002)
[69] 王敬龍, 「以溶膠-凝膠法製備ITO 薄膜之製程研究」, 國立成功大學材料科學及工程研究所碩士論文, 民國85年。
[70] 許國銓, 「科技玻璃-高性能透明導電膜玻璃」, 材料與社會, 84期, 民國82年,
[71] J. Wang, G. Du, Y. Zhang, B. Zhao, X. Yang, D. Liu, J. Crystal Growth, 263, 269 (2004)
[72] C. Shi, Z. Fu, C. Guo, X. Ye, Y. Wei, J. Deng, J. Deng, J. Shi, G. Zhang, Journal of Electron Spectroscopy and Related Phenomena, 101-103, 629 (1999)
[73] C. C. Lin, C. S. Hsiao, S. Y. Chen, S. Y. Cheng, Journal of the European Ceramic Society, 15, 282 (2004)
[74] J. Elias, R. T. Zaere, C. L. Clément, J. Phys. Chem. C, 112, 5736 (2008)
[75] M. J. Zheng, L. D. Zhang, G. H. Li, W. Z. Shen, Chem. Phys. Lett., 363, 123 (2002)
[76] Q. Wang, G. Wan, B. Xu, J. Jie, X. Han, Mater. Lett., 59, 1378 (2005)
[77] Y. Li, G. W. Meng, L. D. Zhang, Appl. Phys. Lett., 76, 2011 (2000)
[78] M. Lai, D. J. Riley, Chem. Mater., 18, 2233 (2006)
[79] Lee W., Ji R., Osele U., Nielsch K., Nature Materials, 5, 741 (2006)
[80] H. Masuda, F, Hasegwa, S. Ono, J. Electrochem. Soc., 144, 127 (1997)
[81] G. L. Che, B. B. Lakshmi, E. R.Fisher, C. R. Martin, Nature, 393, 346 (1998)
[82] H. Masuda, K. Fukuda, Science, 9, 1466 (1995)
[83] H. Masuda, K. Yada, A. Osaka, Jpn. J. Appl. Phys., 37, 1340 (1998)
[84] F. Li, L. Zhang, Robert, Chem. Mater, 1998
[85] H. Masuda, F. Hasegwa , J. Electrochem. Soc., 144, 127 (1997)
[86] A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, Journal of Applied Physics , 84 , 6023 (1998)
[87]林文章, 「太陽能電池技術入門」, 全華圖書股份有限公司, 民國97年
[88]S.S Jeong, A. Mittiga, E. Salza, A. Masci, S. Passerini, 53, 2226 (2008)
[89] J. Cui, U. J. Gibson, J. Phys. Chem., 114, 6408 (2010)