簡易檢索 / 詳目顯示

研究生: 李漢誠
Lee, Han-Cheng
論文名稱: 以有機金屬氣相磊晶法成長氮化鎵系列太陽能電池及光檢測器之研究
Investigation of GaN-based Solar Cells and Photodetectors Grown by MOVPE
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 130
中文關鍵詞: 太陽能電池光檢測器
外文關鍵詞: solar cells, photodetectors
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是在研究以有機金屬氣相磊晶法成長氮化鎵系列太陽能電池及光檢測器之研究,為了獲得最佳化p-GaN/i-InGaN/n-GaN結構的太陽能電池成長參數,因此InxGa1-xN吸收層的成長條件需要被適當的調整以及最佳化,如下所示:成長溫度為 815℃, TMGa流量為8 sccm,TMIn流量為250 sccm, NH3流量為12000 sccm, N2 (圓盤轉速)流量為200 sccm。為了有效地改善氮化鎵系列的太陽能電池品質,在本論文中具有漸進式InxGa1-xN吸收層的太陽能電池已經被設計和製作出。比較單層InxGa1-xN吸收層的太陽能電池,具有漸進式InxGa1-xN吸收層的太陽能電池的缺陷密度可以從5.6×108 cm-2降低至2.9×108 cm-2,其原因可以歸咎於晶格不匹配減少的關係。此外針對單層InxGa1-xN吸收層的太陽能電池相比,具有漸進式InxGa1-xN吸收層的太陽能電池擁有較小的漏電流而且漏電流可改善約77.3%。而且具有漸進式InxGa1-xN吸收層的太陽能電池的量子效率(~75%)也高於單層InxGa1-xN吸收層的太陽能電池(~40%)。在AM 1.5G太陽光光譜的量測下,具有漸進式InxGa1-xN吸收層的太陽能電池的開路電壓和短路電流密度分別為1.33 V和5.9×10-4 A/cm2,而填充因子和功率轉換效率分別為65%和0.51%,其效率是比單層InxGa1-xN吸收層的太陽能電池大(0.21%)。此外在本論文中,具有單層和多層抗反射層的太陽能電池也已經被製作出。針對不具有抗反射層的太陽能電池相比,具有單層和多層抗反射層的太陽能電池的表面反射率可以在波長330 nm和500 nm之間被降低至5%以下。針對不具有抗反射層的太陽能電池相比,具有多層抗反射層的太陽能電池的漏電流在逆向偏壓3 V時可以從16×10-6 A改善至0.8×10-6 A,而且在開路電壓和填充因子分別可改善100%和54.5%。與不具有抗反射層的太陽能電池相比,具有單層和多層抗反射層的太陽能電池的理想因子分別可改善19.4%和31.9%。在本論文的電極圖案設計中,具有各種指插狀電極的太陽能電池已經被製作出並且計算出每一個電極圖案的功率損失。在電極圖案設計中分別有3根、6根和12根類型的指插狀電極圖案,其名稱分別為SCs-Three, -Six and -Twelve,而不具有指插狀根數電極的太陽能電池命名為SCs-Zero。在電極圖案設計中,指插狀寬度的變化從10μm m變化至30 μm。由實驗中可以發現太陽能電池的電特性會因為指插狀電極的根數和寬度增加而變良好,短路電流密度會隨著指插狀電極的根數和寬度增加而增加,其中也發現開路電壓和填充因子並不會因為不同的電極圖案而有所變化。根據功率損失的計算,片電阻的功率損失在所有各項的功率損失中是最為嚴重的。其中也發現當指插狀電極的根數和寬度隨之增加時,片電阻的功率損失可以被有效地改善。與不具有指插狀電極的太陽能電池相比(448×10-9 w/cm2),具有3根、6根和12根指插狀電極的太陽能電池且指插狀寬度為10μm m時,其各個電極中的片電阻功率損失分別可改善至242×10-9 w/cm2, 55.3×10-9 w/cm2, and 9.89×10-9 w/cm2。由此研究可得知,指插狀電極的最佳參數可以從功率損失的計算而獲得,且計算的結果和實際元件的量測有很好的一致性,而最佳指插狀電極的根數和寬度分別為12根和30m。在本論文中的最後為光檢測器的設計,具有金屬/氧化層/半導體結構(MIS)的Al0.35In0.01Ga0.64N UV-C 280 nm的光檢測器也已經被製作出。與波長操作在280 nm的Al0.4Ga0.6N/GaN異質結構的光檢測器相比,使用此Al0.35In0.01Ga0.64N/GaN的結構可以遭受較低的應力並且在光檢測器晶格鬆弛的情形可以從60%改善至4.48%。具有氧化層AlInGaN光檢測器的暗電流為2.78×10-8 A/cm2,其值比不具有氧化層的光檢測器小6個次方,其原因可歸咎於氧化層可增加表面能障的高度同時可減低在金屬與半導體之間的表面狀態密度。AlInGaN MIS光檢測器的最小雜訊等效功率和最大檢測率分別為9.37×10-12 w和1.85×1011 cmHz1/2w-1。為了有效地改善暗電流,多層接面Ni/Pd/Au金屬結構被應用在AlInGaN的光檢測器中。和傳統Ni/Au金屬結構相比,具有較高功函數的金屬(Pd)當做插入層形成多層接面Ni/Pd/Au金屬後可有效地降低暗電流,其值約可改善59.5%。在逆向偏壓5 V時,具有傳統Ni/Au金屬和具有多層接面Ni/Pd/Au金屬的光檢測器的光暗電流比分別為9.2和4.2×102。而在逆向偏壓3.5 V時,其響應率分別為1.8 mA/W和10.3 mA/W。就光響應率和排斥比而言,具有多層接面Ni/Pd/Au金屬的光檢測器的特性皆比傳統Ni/Au金屬的光檢測器良好。另一方面,多層接面Ni/Ir/Au金屬是被建議和製作在AlInGaN的光檢測器中。具有較高功函數的金屬(Ir)當做插入層形成多層接面Ni/Ir/Au金屬後可有效地降低光檢測器的暗電流,並且可增強元件的相關特性,其原因可歸咎於在多層接面金屬中金屬氧化物IrO2的金屬形成。在逆向偏壓3.5 V時,和具有傳統Ni/Au金屬的光檢測器相比,具有多層接面Ni/Ir/Au金屬的光檢測器的暗電流可從37×10-9 A/cm2 改善至 8.3×10-9 A/cm2,而在響應率的排斥比中也可從28.6改善至74。

    The main purpose of the dissertation was investigation of GaN-based solar cells (SCs) and photodetectors (PDs) by using metalorganic vapor phase epitaxy (MOVPE). For obtaining optimal growth parameters of p-GaN/i-InxGa1-xN/n-GaN SCs, the growth conditions of the InxGa1-xN absorption layer needs to be adjusted and optimized as follows: growth temperature: 815℃, TMGa flow rate: 8 sccm, TMIn flow rate: 250 sccm, NH3 flow rate: 12000 sccm, and N2 flow rate (disk rotation): 200 sccm. In order to significantly improve quality of GaN-based SCs, the SCs with graded InxGa1-xN absorption layer (Device-GIAL) have been designed and fabricated. Compared with the SCs with a single InGaN absorption layer (Device-SIAL), threading dislocation density in the Device-GIAL could be reduced from 5.6×108 cm-2 to 2.9×108 cm-2, which was attributed to the reduction of lattice mismatch. Furthermore, the Device-GIAL had a smaller leakage current than that of the Device-SIAL. The leakage current of Device-GIAL was improved by 77.3%, as compared to Device-SIAL. The quantum efficiency of Device-GIAL (~75%) also was higher than that of Device-SIAL (~40%). Under AM 1.5G one-sun illumination, the open-circuit voltage and short-circuit current density of the Device-GIAL were 1.33 V and 5.9×10-4 A/cm2, respectively, while the fill factor and power conversion efficiency were 65% and 0.51%, respectively. The efficiency of the Device-GIAL was higher than that of the Devcie-SIAL (0.21%). Furthermore, the solar cells with a single-antireflection-layer (Device-SARL) and multiple-antireflection-layer (Device-MARL) have been fabricated. Compared with the SCs without an antireflection layer (Device-Control), the surface reflectance of the Device-SARL and Device-MARL can be reduced down to 5% at wavelengths between 330 nm and 500 nm. The leakage current of Device-MARL was improved from 16×10-6A to 0.8×10-6A under a reverse bias of 3V, as compared to Device-Control. The open-circuit voltage and fill factor of the Device-MARL were improved by 100% and 54.5%, respectively, as compared to Device-Control. The ideality factor could also be improved by 19.4% and 31.9% for devices with a SARL (SiO2) and MARL (Ta2O5/SiO2), respectively. In the electrode pattern design, solar cells with various interdigitated electrode patterns were fabricated and calculated the power loss for each electrode pattern. The electrode patterns were applied to the SCs and with 3, 6 and 12 fingers, denoted as SCs-Three, -Six and -Twelve, respectively. Solar cells without fingers, denoted as SCs-Zero were used as the control sample. The finger width (Wf) was varied from 10 to 30 μm. It was found that increasing number and width of fingers on SCs improved the electrical performance. The short-circuit current density increased with the increasing number and width of fingers, whereas the open-circuit voltage and fill factor did not significantly vary. According to power loss calculations, the sheet resistance loss (Psheet) was the largest resistance component in total power loss. A significant improvement in Psheet was observed when the number and width of fingers were increased. Compared with the SCs-Zero (448×10-9 w/cm2), the Psheet of SCs-Three, -Six, and -Twelve (Wf=10μm) can be improved to 242×10-9 w/cm2, 55.3×10-9 w/cm2, and 9.89×10-9 w/cm2, respectively. The optimum parameters of the interdigitated electrode pattern obtained from power loss calculations are in good agreement with those obtained from electrical analyses. The optimum parameters were 12 fingers with a width of 30m. Furthermore, aluminum indium gallium nitride (AlInGaN) UV-C 280 nm metal-insulator-semiconductor (MIS) photodetectors have been fabricated. Compared with the Al0.4Ga0.6/GaN heterostructure PDs operated at 280 nm, the use of Al0.35In0.01Ga0.64N/GaN structure should suffer less stress and the relaxation of Al0.35In0.01Ga0.64N/GaN PDs can be reduced from 60% to 4.48%. The dark current density of AlInGaN PDs with an insulating layer was 2.78×10-8 A/cm2, which were six orders of magnitude lower than that of PDs without an insulating layer, which can be attributed to the increasing surface barrier height and the decreasing density of the interface states between the metal and semiconductor. The AlInGaN MIS PDs also have the minimum noise equivalent power and the maximum detectivity of 9.37×10-12 w and 1.85×1011 cmHz1/2w-1, respectively. For decreasing the dark current, a Ni/Pd/Au contact was utilized on the AlInGaN PDs. With the inserting of the high work function metal (palladium, Pd), compared with the conventional Ni/Au contact, the multilayer Ni/Pd/Au contact can significantly reduce the dark current. The dark current of UV-C AlInGaN PDs with a multilayer Ni/Pd/Au contact can be relatively improved by 59.5 %. Under the 5 V reverse bias, the photo/dark current ratio of the PDs with a conventional Ni/Au contact and a multilayer Ni/Pd/Au contact were 9.2 and 4.2×102, respectively. The responsivity of Device-Ni/Pd/Au (10.3 mA/W@3.5V) was higher that that of Device-Ni/Au (1.8 mA/W@3.5V). The UV-C AlInGaN PDs with a multilayer Ni/Pd/Au contact have a better responsivity and rejection ratio than those of PDs with a conventional Ni/Au contact. On the other hand, a Ni/Ir/Au multilayer contact were proposed and fabricated on AlInGaN PDs. The inserting layer of the high work function metal (Ir) can significantly reduce the dark current of PDs and enhance the device performance, which can be attributed to the formation of IrO2 in multilayer contact. With a 3.5 V reverse bias, it was found that the dark current densities of PDs with a Ni/Ir/Au contact can be improved from 37×10-9 A/cm2 to 8.3×10-9 A/cm2, as compared to the PDs with a Ni/Au contact. The rejection ratio also can be improved form 28.6 to 74 when the PDs were with a Ni/Ir/Au contact.

    Abstract (in Chinese)........................I Abstract (in English).......................IV Acknowledgement.........................VIII Contents.............................X Table Captions.................................................XIV Figure Captions................................................XV Chapter 1 Introduction......................................1 1.1 Background.........................1 1.2 Motivation.........................2 1.3 Organization of dissertation..................3 Chapter 2 Growth of Indium Gallium Nitride Epilayers.........12 2.1 Introduction........................12 2.2 Optimization of growth parameters for InxGa1-xN epilayer.....13 2.2.1 Growth temperature...................13 2.2.2 Flow rate of TMIn....................14 2.2.3 Flow rate of NH3......................................14 2.2.4 Disk rotation......................15 2.3 Optimization of growth parameters for p-GaNi-InGaN -GaN device structure..........................16 2.3.1 Flow rate of TMIn and TMGa...............16 2.3.2 Growth temperature..................17 2.4 Design and growth of graded InxGa1-xN structure..........18 2.4.1 Material growth....................18 2.4.2 Material analysis (XRD, PL and AES)............19 2.4.3 Efects of carrier scattering mechanisms...........20 2.5 Summary.........................22 Chapter 3 Electrical Characteristics Improvement of Solar Cells....49 3.1 Introduction........................49 3.2 The InxGa1-xN-based solar cells with various In compositions.....52 3.2.1 Experimental procedures................52 3.2.2 Material properties of InGaN-based SCs with various In compositions.....................53 3.2.3 Electrical properties of InGaN-based SCs with various In compositions....................54 3.3 The InxGa1-xN-based solar cells with a graded InxGa1-xN absorption layer...........................54 3.3.1 Experimental procedures................54 3.3.2 XRD measurement for Sample-SIAL and Sample-GIAL....56 3.3.3 TEM analysis for Sample-SIAL and Sample-GIAL......57 3.3.4 XRD and PL measurement for Device-SIAL and Device-GIAL..57 3.3.5 AFM analysis for Device-SIAL and Device-GIAL......58 3.3.6 Electrical characteristics for Device-SIAL and Device-GIAL...59 3.4 The InxGa1-xN-based solar cells with antireflection layer (single junction SiO2 and multi-junction Ta2O5/SiO2)..............60 3.4.1 Experimental procedures................60 3.4.2 Reflectance simulation and measurement..........61 3.4.3 Hot-spot effect and leakage current analysis.........62 3.4.4 Current density-voltage characteristics under AM 1.5G one-sun illumination......................63 3.5 The InxGa1-xN-based solar cells with various interdigitated electrode patterns.........................65 3.5.1 Experimental procedures................65 3.5.2 Comparison of the electrical characteristics for various patterns.......66 3.5.3 Calculation of power loss for various patterns.........67 3.6 Summary.........................69 Chapter 4 Study of the AlInGaN MIS Photodetectors..........96 4.1 Introduction........................96 4.2 Metal-insulator-semiconductor photodetectors at UV-C 280 nm....98 4.2.1 Experimental procedures................98 4.2.2 Material properties of MIS AlInGaN PDs..........99 4.2.3 Electrical properties of MIS AlInGaN PDs.........100 4.2.4 Noise analysis of MIS AlInGaN PDs............101 4.3 Improving electrical characteristics by using high work function metal..........................103 4.3.1 Experimental procedures................103 4.3.2 Electrical properties of MIS AlInGaN PDs.........104 4.4 Improving electrical characteristics by using a Ni/IrO2/Au multilayer metal contact.......................105 4.4.1 Experimental procedures................105 4.4.2 Dark current density of PDs with Ni/Au and Ni/IrO2/Au electrode......................106 4.4.3 SIMS analysis for PDs with Ni/Au and Ni/IrO2/Au electrode..106 4.4.4 ESCA analysis for verifying existence of IrO2 in Ir metal layer........................107 4.4.5 Spectral responsivity of PDs with Ni/Au and Ni/IrO2/Au electrode.......................107 4.5 Summary.........................108 Chapter 5 Conclusions and Future Prospects.............124 5.1 Conclusions........................124 5.2 Future prospects.....................128

    Chapter 1
    [1] B. Burnett, "The basic physics and Design of III-V Multijunction Solar cells," 2002.
    [2] T. Irie, S. Endo, and S. Kimura, "Electrical properties of p- and n-type CuInSe2 single crystals," Jpn. J. Appl. Phys., vol. 18, pp. 1303-1310, 1979.
    [3] M. Yamaguchi, "Multi-junction solar cells and novel structures for solar cell applications," Physica E, vol. 14, pp. 84-90, 2002.
    [4] M. Boreland and D. Bagnall, "Current and future photovoltaics," 2006.
    [5] J. C. Lin, Y. K. Su, S. J. Chang, W. H. Lan, W. R. Chen, Y. C. Cheng, W. J. Lin, Y. C. Tzeng, H. Y. Shin, and C. M. Chang, "InN grown on GaN/sapphire templates at different temperatures by MOCVD," Opt. Mater., vol. 30, pp. 517-520, 2007.
    [6] B. Maleyre, O. Briot, and S. Ruffenach, "MOVPE growth of InN films and quantum dots," J. Cryst. Growth vol. 269, pp. 15-21, 2004.
    [7] J. Wu, W. Walukiewicz, W. Shan, K. M. Wu, J. W. A. III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, " Temperature dependence of the fundamental band gap of InN," J. Appl. Phys. , vol. 94, pp. 4457-4460, 2003.
    [8] K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, "Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell's structure focusing on series resistance for high-efficiency concentrator photovoltaic systems," Sol. Energy Mater. Sol. Cells, vol. 90, pp. 1308-1321, 2006.
    [9] A. D. Vos, "Detailed balance limit of the efficiency of tandem solar cells," J. Phys. D: Appl. Phys., vol. 13, pp. 839-846, 1980.
    [10] Y. Shimizu, N. Miyashita, Y. Mura, A. Uedono, and Y. Okada, "Optimization of growth of GaInNAs dilute nitrides for multi-junction solar cell applications," IEEE conference, 2006.
    [11] J. W. Ager and W. Walukiewicz, "High efficiency, radiation-hard solar cells," Lawrence Berkeley National Laboratory Report 56326, 2004.
    [12] A. Balcioglu, R. K. Ahrenkiel, and D. J. Friedman, "Effects of oxygen contamination on diffusion length in p+-n GaInNAs solar cells," J. Appl. Phys., vol. 93, pp. 3635-3642, 2003.
    [13] S. X. Li, K. M. Yu, J. Wu, R. E. Jones, W. Walukiewicz, J. W. A. III, E. E. Haller, H. Lu, and W. J. Schaff, "Fermi-level stabilization energy in group III nitrides," Phys. Rev. B, Condens. Matter, vol. 71, pp. 1612011-1612014, 2005.
    [14] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. A. III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, "Superior radiation resistance of InGaN alloys: Full-solar-spectrum photovoltaic material system," J. Appl. Phys., vol. 94, pp. 6477-6482, 2003.
    [15] O. Jani, C. Honsberg, A. Asghar, D. Nicol, I. Ferguson, A. Doolittle, and S. Kurtz, "Characterization and analysis of InGaN photovoltaic devices," Proceedings of the 31st IEEE PVSC, pp. 37-42, 2005.
    [16] C. Honsberg, O. Jani, A. Doolittle, E. Trybus, G. Namkoong, I. Ferguson, D. Nico, and A. Payne, "InGaN-A new solar cell material," Proceedings of the 19th European photovoltaic science and engineering conference, pp. 15-20, 2004.
    [17] O. K. Jani, "Development of wide-band gap InGaN solar cells for high-efficiency photovoltaics," 2008.
    [18] W. Shockley and H. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," J. Appl. Phys., vol. 32, pp. 510-519, 1961.
    [19] I. Ho and G. B. Stringfellow, "Solid phase immiscibility in GaInN," Appl. Phys. Lett., vol. 69, pp. 2701-2703, 1996.
    [20] X. Chen, K. D. Matthews, D. Hao, W. J. Schaff, and L. F. Eastman, "Growth, fabrication, and characterization of InGaN solar cells," phys. stat. sol. (a), vol. 205, pp. 1103-1105, 2008.
    [21] B. R. Jampana, A. G. Melton, M. Jamil, N. N. Faleev, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, "Design and Realization of Wide-Band-Gap(∼2.67 eV) InGaN p-n Junction Solar Cell," IEEE Electron Dev. Lett., vol. 31, pp. 32-34, 2010.
    [22] O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, "Design and characterization of GaN/InGaN solar cells," Appl. Phys. Lett., vol. 91, pp. 1321171-1321173, 2007.
    [23] J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai, and L. C. Peng, "Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers," IEEE Electron Dev. Lett., vol. 30, pp. 225-227, 2009.

    Chapter 2
    [1] O. Jani, C. Honsberg, A. Asghar, D. Nicol, I. Ferguson, A. Doolittle, and S. Kurtz, "Characterization and analysis of InGaN photovoltaic devices," Proceedings of the 31st IEEE PVSC, pp. 37-42, 2005.
    [2] J. C. Lin, Y. K. Su, S. J. Chang, W. H. Lan, W. R. Chen, Y. C. Cheng, W. J. Lin, Y. C. Tzeng, H. Y. Shin, and C. M. Chang, "InN grown on GaN/sapphire templates at different temperatures by MOCVD," Opt. Mater., vol. 30, pp. 517-520, 2007.
    [3] J. Wu, W. Walukiewicz, W. Shan, K. M. Wu, J. W. A. III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, " Temperature dependence of the fundamental band gap of InN," J. Appl. Phys. , vol. 94, pp. 4457-4460, 2003.
    [4] I. Ho and G. B. Stringfellow, "Solid phase immiscibility in GaInN," Appl. Phys. Lett., vol. 69, pp. 2701-2703, 1996.
    [5] R. A. Oliver, M. J. Kappers, C. J. Humphreys, and G. A. D. Briggs, "The influence of ammonia on the growth mode in InGaN/GaN heteroepitaxy," J. Crys. Growth, vol. 272, pp. 393-399, 2004.
    [6] M. Bosi, R. Fornari, and "A study of indium incorporation efficiency in InGaN grown by MOVPE," J. Crys. Growth, vol. 265, pp. 434-439, 2004.
    [7] S. M. F. Hasan, M. A. Subhan, and K. M. Mannan, "Charge-carrier transport mechanism in copper indium di-selenide thin films " J. Phys. D: Appl. Phys., vol. 32, pp. 1302-1305, 1999.
    [8] T. Irie, S. Endo, and S. Kimura, "Electrical Properties of p- and n-Type CuInSe2 Single Crystals," Jpn. J. Appl. Phys. , vol. 18, pp. 1303-1310, 1979.
    [9] H. Tang, W. Kim, A. Botchkarev, G. Popovici, F. Hamdani, and H. Morkoc, "Analysis of carrier mobility and concentration in Si-doped GaN grown by reactive molecular beam epitaxy," Solid-State Electronics, vol. 42, pp. 839-847, 1998.
    [10] D. A. Anderson and N. Aspley, "The Hall effect in III-V semiconductor assessment " Semicond. Sci. Technol., vol. 1, pp. 187-202, 1986.
    [11] H. Brooks, "Theory of the Electrical Properties of Germanium and Silicon," Adv. Electron. Electron Phys., vol. 7, pp. 85-182, 1955.
    [12] T. Hama, T. Ihara, H. Sato, H. Fujisawa, M. Ohsawa, Y. Ichikawa, and H. Sakai, Sol.Energy Mater. , vol. 2-4, pp. 380-383, 1991.
    [13] S. M. Wasim, "Transport properties of CuInSe2," Solar cells, vol. 16, pp. 289-316, 1986.

    Chapter 3
    [1] O. Jani, C. Honsberg, A. Asghar, D. Nicol, I. Ferguson, A. Doolittle, and S. Kurtz, "Characterization and analysis of InGaN photovoltaic devices," Proceedings of the 31st IEEE PVSC, pp. 37-42, 2005.
    [2] I. Ho and G. B. Stringfellow, "Solid phase immiscibility in GaInN," Appl. Phys. Lett., vol. 69, pp. 2701-2703, 1996.
    [3] X. Chen, K. D. Matthews, D. Hao, W. J. Schaff, and L. F. Eastman, "Growth, fabrication, and characterization of InGaN solar cells," phys. stat. sol. (a), vol. 205, pp. 1103-1105, 2008.
    [4] B. R. Jampana, A. G. Melton, M. Jamil, N. N. Faleev, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, "Design and Realization of Wide-Band-Gap(∼2.67 eV) InGaN p-n Junction Solar Cell," IEEE Electron Dev. Lett., vol. 31, pp. 32-34, 2010.
    [5] O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, "Design and characterization of GaN/InGaN solar cells," Appl. Phys. Lett., vol. 91, pp. 1321171-1321173, 2007.
    [6] J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai, and L. C. Peng, "Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers," IEEE Electron Dev. Lett., vol. 30, pp. 225-227, 2009.
    [7] I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, "Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films," Appl. Phys. Lett., vol. 73, pp. 1634-1636, 1998.
    [8] K. Kim, C. S. Kim, and J. Y.Lee, "The In compositional gradation effect on photoluminescence in InGaN/GaN multi-quantum-well structures," J. Phys.: Condens. Matter, vol. 18, pp. 3127-3140, 2006.
    [9] Y. Sun, Y. H. Cho, E. K. Suh, H. J. Lee, R. J. Choi, and Y. B. Hahn, "Carrier dynamics of high-efficiency green light emission in graded-indium-content InGaN/GaN quantum wells: An important role of effective carrier transfer," Appl. Phys. Lett., vol. 84, pp. 49-51, 2004.
    [10] T. Chung, J. Limb, D. Yoo, J.-H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, B. C. Kung, M. Feng, D. M. Keogh, and P. M. Asbeck, "Device operation of InGaN heterojunction bipolar transistors with a graded emitter-base design," Appl. Phys. Lett., vol. 88, pp. 1835011-1835013, 2006.
    [11] T. Chung, J. Limb, J. H. Ryou, W. Lee, P. Li, D. Yoo, X. B. Zhang, S. C. Shen, R. D. Dupuis, D. Keogh, P. Asbeck, B. Chukung, M. Feng, D. Zakharov, and Z. L. Weber, "Growth of InGaN HBTs by MOCVD," J. Electronic Mater., vol. 35, pp. 695-700, 2006.
    [12] T. L. Song, S. J. Chua, E. A. Fitzgerald, P. Chen, and S. Tripathy, "Characterization of graded InGaN/GaN epilayers grown on sapphire," J. Vac. Sci. Technol. A, vol. 22, pp. 287-292, 2004.
    [13] V. M. Aroutiounian, K. Martirosyan, and P. Soukiassian, "Almost zero reflectance of a silicon oxynitride/porous silicon double layer antireflection coating for silicon photovoltaic cells," J. of Phys. D.: Appl. Phys., vol. 39, pp. 1623-1625, 2006.
    [14] A. S. Hovhannisyan, "Single-layer antireflection coatings for GaAs solar cells," J. Contemp. Phys. (Armenian Ac. Sci.) vol. 43, pp. 136-138, 2008.
    [15] D. J. Aiken, "High performance anti-reflection coatings for broadband multi-junction solar cells," Sol. Energy Mater. Sol. Cells, vol. 64, pp. 393-404, 2000.
    [16] S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, "Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique," Sol. Energy Mater. Sol. Cells, vol. 90, pp. 2710-2719, 2006.
    [17] M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, "Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm," Opt. Express, vol. 16, pp. 5290-5298, 2008.
    [18] M. Yamaguchi, "Multi-junction solar cells and novel structures for solar cell applications," Physica E, vol. 14, pp. 84-90, 2002.
    [19] K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, "Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator photovoltaic systems," Sol. Energy Mater. Sol. Cells, vol. 90, pp. 1308-1321, 2006.
    [20] O. K. Jani, "Development of wide-band gap InGaN solar cells for high-efficiency photovoltaics," 2008.
    [21] L. J. Caballero, A. Martinez, P. S. Friera, M. A. Vazquez, and J. Alonso, "Front grid design in industrial silicon solar cells: modelling to evaluate the behavior of three vs. two buses cell patterns," IEEE conference, 2008.
    [22] A. Antonini, M. Stefancich, D. Vincenzi, C. Malau, F. Bizzi, A. Ronzoni, and G. Martinelli, "Contact grid optimization methodology for front contact concentration solar cells," Sol. Energy Mater. Sol. Cells, vol. 80, pp. 155-166, 2003.
    [23] D. L. Meier and D. K. Schroder, "Contact resistance :Its measurement and relative importance to power loss in a solar cell," IEEE Trans. Electron Dev., vol. ED-31, pp. 647-653, 1984.
    [24] P. Morvillo, E. Boboico, F. Formisano, and F. Roca, "Influence of metal frid patterns on the performance of silicon solar cells at different illumination levels," Mater. Sci. Eng. B, vol. 159-160, pp. 318-321, 2009.
    [25] M. F. Stuckings and A. W. Blakers, "A study of shading and resistive loss from the fingers of encapsulated solar cells," Sol. Energy Mater. Sol. Cells, vol. 59, pp. 233-242, 1999.
    [26] J. C. Zhang, M. F. Wu, J. F. Wang, J. P. Liu, Y. T. Wang, J. Chen, R. Q. Jin, and H. Yang, "A study of the degree of relaxation of AlGaN epilayers on GaN template," J. Cryst. Growth, vol. 270, pp. 289-294, 2004.
    [27] S. K. Hong, B. J. Kim, H. S. Park, Y. Park, S. Y. Yoon, and T. I. Kim, "Evaluation of nanopipes in MOCVD grown (0 0 0 1) GaN/Al2O3 by wet chemical etching," J. Cryst. Growth, vol. 191, pp. 275-278, 1998.
    [28] J. D. Jhou, S. J. Chang, Y. K. Su, Y. Y. Lee, C. H. Liu, and H. C. Lee, " GaN Schottky barrier photodetectors with SiN/GaN nucleation layer," Appl. Phys. Lett., vol. 91, pp. 1035061-1035063, 2007.
    [29] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, "Gain mechanism in GaN Schottky ultraviolet detectors," Appl. Phys. Lett., vol. 79, pp. 1417-1419, 2001.
    [30] S. Bowden and C. Honsberg, "Photovoltaics CDROM: chapter 7 modules and arrays," http://pvcdrom.pveducation.org, 2010.
    [31] AA-Bustani, CEng, CPhys., and M.Y.Feteha, "Design of antireflection coating for triple heterojunction AlGaAs-GaAs space solar cells," IEEE EDMO workshop, pp. 55-60, 1995.
    [32] S. A. Chevtchenko, M. A. Reshchikov, Q. Fan, X. Ni, Y. T. Moon, A. A. Baski, and H. Morkoç, "Study of SiNx and SiO2 passivation of GaN surfaces," J. Appl. Phys., vol. 101, pp. 1137091-1137097, 2007.
    [33] T. Markvart and L. Castaner, "Solar cells: materials, manufacture and operation," Elsevier Advanced Technology, Oxford, pp. 95-96, 2005.
    [34] N. D. Arora and J. R. Hauser, "Antireflection layer for GaAs solar cells," J. Appl. Phys., pp. 8839-8846, 1982.
    [35] S. Bowden and C. Honsberg, "Photovoltaics CDROM: chapter 5 design of silicon cells," http://pvcdrom.pveducation.org, 2010.
    [36] S. Bowden and C. Honsberg, "Photovoltaics CDROM: chapter 4 solar cell operation," http://pvcdrom.pveducation.org, 2010.
    [37] D. L. Meier and D. K. Schroder, "Contact resistance : its measurement and relative importance to power loss in a solar cell," IEEE Trans. Electron Dev., vol. ED-31, pp. 647-653, 1984.
    [38] P. N. Vinod, "Application of power loss calculation to estimate the specific contact resistance of the screen-printed silver ohmic contacts of the large area silicon colar cells," J. Mater. Sci.:Mater. Electron, vol. 18, pp. 805-510, 2007.
    [39] R. A. Serway, "Principles of Physics (2nd ed ed.)," Fort Worth, Texas; London: Saunders College Pub., p. 602, 1998.

    Chapter 4
    [1] J. C. Lin, Y. K. Su, S. J. Chang, W. H. Lan, K. C. Huang, W. R. Chen, Y. C. Cheng, and W. J. Lin, "GaN-based light-emitting diodes prepared on vicinal sapphire substrates," IET Optoelectron., vol. 1, pp. 23-26, 2007.
    [2] S. Nakamura, M. Senoh, N. Iwasa, and S. C. Nagahama, "High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes," Appl. Phys. Lett., vol. 67, pp. 1868-1870, 1995.
    [3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, "High-Power, Long-Lifetime InGaN Multi - Quantum - Well - Structure Laser Diodes," Jpn. J. Appl. Phys., vol. 36, pp. L1059-L1061, 1997.
    [4] S. J. Chang, T. K. Ko, Y. K. Su, Y. Z. Chiou, C. S. Chang, S. C. Shei, J. K. Sheu, W. C. Lai, Y. C. Lin, W. S. Chen, and C. F. Shen, "GaN-based p-i-n sensors with ITO contacts," IEEE Sensors Journal, vol. 6, pp. 406-411, 2006.
    [5] G. Mazzeo, J. L. Reverchon, J. Y. Duboz, and A. Dussaigne, "AlGaN-Based Linear Array for UV Solar-Blind Imaging From 240 to 280 nm," IEEE Sensors Journal, vol. 6, pp. 957-963, 2006.
    [6] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, "High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN," Appl. Phys. Lett., vol. 74, pp. 762-764, 1999.
    [7] W. Saito, T. Nitta, Y. Kakiuchi, Y. Saito, K. Tsuda, I. Omura, and M. Yamaguchi, "A 120-W Boost Converter Operation Using a High-Voltage GaN-HEMT," IEEE Electron Device Lett., vol. 29, 2008.
    [8] H. Xu, S. Gao, S. Heikman, S. I. Long, U. K. Mishra, and R. A. York, "A High-Efficiency Class-E GaN HEMT Power Amplifier at 1.9 GHz," IEEE Microw. Wirel. Compon. Lett., vol. 16, pp. 22-24, 2006.
    [9] T. Li, D. J. H. Lambert, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and J. C. Campbell, "Low-Noise Back-Illuminated AlxGa1-xN-Based p-i-n Solar-Blind Ultraviolet Photodetectors," IEEE J. Quantum Electron., vol. 37, pp. 538-545, 2001.
    [10] S.-S. Liu, P.-W. Li, W. H. Lan, and W.-J. Lin, "Improvements of AlGaN/GaN p-i-n UV sensors with graded AlGaN layer for the UV-B (280–320 nm) detection," Mater. Sci. Eng. B, vol. 122, pp. 196-200, 2005.
    [11] E. Monroy, F. Calle, J. L. Pau, F. J. Sanchez, and E. Munoz, "Analysis and modeling of AlxGa1-xN-based Schottky barrier photodiodes," J. Appl. Phys., vol. 88, pp. 2081-2091, 2000.
    [12] B. Monemar, "III-V nitrides : important future electronic Materials," J. Mater. Sci., vol. 10, pp. 227-254, 1999.
    [13] M. F. Wu, S. Yao, A. Vantomme, S. Hogg, G. Langouche, W. V. d. Stricht, K. Jacobs, I. Moerman, J. Li, and G. Y. Zhang, "Elastic strain in InGaN and AlGaN layers," Mater. Sci. Eng. B, vol. 75, pp. 232-235, 2000.
    [14] H. Hirayama, K. Akita, T. Kyono, T. Nakamura, and K. Ishibashi, "High-Efficiency 352 nm Quaternary InAlGaN-Based Ultraviolet Light-Emitting Diodes Grown on GaN Substrates," Jpn. J. Appl. Phys., vol. 43, pp. L1241-l1243, 2004.
    [15] J. Li, K. B. Nam, K. H. Kim, J. Y. Lin, and H. X. Jiang, "Growth and optical properties of InxAlyGa1-x-yN quaternary alloys," Appl. Phys. Lett., vol. 78, pp. 61-63, 2001.
    [16] T. N. Oder, J. Li, J. Y. Lin, and H. X. Jiang, "Photoresponsivity of ultraviolet detectors based on InxAlyGa1–x–yN quaternary alloys," Appl. Phys. Lett., vol. 77, pp. 791-793, 2000.
    [17] M. E. Aumer, S. F. LeBoeuf, S. M. Bedair, M. Smith, J. Y. Lin, and H. X. Jiang, "Effects of tensile and compressive strain on the luminescence properties of AlInGaN/InGaN quantum well structures," Appl. Phys. Lett., vol. 77, pp. 821-823, 2000.
    [18] M. A. Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, H. C. Loye, G. Tamulaitis, A. Zukauskas, D. J. Smith, and D. Chandrasekhar, "Lattice and energy band engineering in AlInGaN/GaN heterostructures," Appl. Phys. Lett., vol. 76, pp. 1161-1163, 2000.
    [19] Y. D. Jhou, S. J. Chang, Y. K. Su, C. H. Chen, H. C. Lee, C. H. Liu, and Y. Y. Lee, "Quaternary AlInGaN-based photodetectors," IET Optoelectron., vol. 2, pp. 42-45, 2008.
    [20] S. N. Mohammad, Z. Fan, A. E. Botchkarev, W. Kim, O. Aktas, and A. Salvador, "Near-ideal platinum–GaN Schottky diodes," Electron Lett. , vol. 32, pp. 598-599, 1996.
    [21] N. Miura, T. Nanjo, M. Suita, T. Oishi, Y. Abe, T. Ozeki, H. Ishikawa, T. Egawa, and T. Jimbo, "Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal," Solid-State Electronics, vol. 48, pp. 689-695, 2004.
    [22] A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Tang, and I. Adesida, "High temperature characteristics of Pd Schottky contacts on n-type GaN," Electron Lett., vol. 32, pp. 1832-1833, 1996.
    [23] Y. Koyama, T. Hashizume, and H. Hasegawa, "Formation processes and properties of Schottky and Ohmic contacts on n-type GaN for field effect transistor applications," Solid-State Electronics, vol. 43, pp. 1483-1488, 1999.
    [24] E. D. Readinger, B. P. Luther, S. E. Mohney, and E. L. Piner, "Environmental aging of. Schottky contacts to n-AlGaN " J Appl Phys. , vol. 89, pp. 7983-7987, 2001.
    [25] H. W. Jang and J. L. Lee, "Transparent ohmic contacts of oxidized Ru and Ir on p-type GaN," J. Appl. Phys., vol. 93, pp. 5416-5421, 2003.
    [26] C. M. Jeon, H. W. Jang, and J. L. Lee, "Thermally stable Ir Schottky contact on AlGaN/GaN heterostructure," Appl. Phys. Lett., vol. 82, pp. 391-393, 2003.
    [27] J. K. Kim, H. W. Jang, C. M. Jeon, and J. L. Lee, "GaN metal–semiconductor–metal ultraviolet photodetector with IrO2 Schottky contact," Appl. Phys. Lett., vol. 81, pp. 4655-4657, 2002.
    [28] J. C. Zhang, M. F. Wu, J. F. Wang, J. P. Liu, Y. T. Wang, J. Chen, R. Q. Jina, and H. Yang, "A study of the degree of relaxation of AlGaN epilayers on GaN template," Journal of Crystal Growth, vol. 270, pp. 289-294, 2004.
    [29] J. J. Zhou, B. Wen, R. L. Jiang, C. X. Liu, X. L. Ji, Z. L. Xie, D. J. Chen, P.Han, R. Zhang, and Y. D. Zheng, "Photoresponse of the In0.3Ga0.7N metal insulator semiconductor photodetectors," Chinese Physics, vol. 16, pp. 2120-2122, 2007.
    [30] S. M. Sze, "Semiconductor Device Physics and Technology," Nation Chiao Tung University, Hsinchu, Taiwan, 2002.
    [31] H. X. JIANG and J. Y. LIN, "AlGaN and InAlGaN alloys-epitaxial growth, optical and electrical properties, and applications," Opto-electronics Review, vol. 10, pp. 271-286, 2002.
    [32] T. K. Ko, S. J. Chang, J. K. Sheu, S. C. Shei, Y. Z. Chiou, M. L. Lee, C. F. Shen, S. P. Chang, and K. W. Lin, "AlGaN/GaN Schottky-barrier UV-B bandpass photodetectors with ITO contacts and LT-GaN cap layers," Semicond. Sci. Technol., vol. 22, pp. 1064-1068, 2006.
    [33] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed.(Oxford University Press, New York ), 1988.
    [34] M. E. Aumer, S. F. LeBoeuf, F. G. McIntosh, and S. M. Bedair, "High optical quality AlInGaN by metalorganic chemical vapor deposition," Appl. Phys. Lett., vol. 75, pp. 3315-3317, 1999.
    [35] C. K. Williams, T. H. Glisson, J. R. Hauser, and M. A. Littlejohn, "Energy bandgap and lattice constant contours of III-V quaternary alloys of the form AxByCzD or ABxCyDz," J. Electron. Mater., vol. 7, pp. 639-646, 1978.
    [36] C. M. Jeon, K. Y. Park, J. H. Lee, J. H. Lee, and J. L. Lee, "Thermally stable AlGaN/GaN heterostructure field-effect transistor with IrO2 gate electrode," J. Vac. Sci. Technol., vol. B24, pp. 1303-1307, 2006.
    [37] Z. J. Lin, W. Lu, J. Lee, D. M. Liu, J. S. Flynn, and G. R. Brandes, "Barrier heights of Schottky contacts on strained AlGaN/GaN heterostructures : Determination and effect of metal work functions," Appl. Phys. Lett. , vol. 82, pp. 4364-4366, 2003.
    [38] S. Y. Han, H. W. Jang, and J. L. Lee, " IrO2 Schottky contact on n-type 4H-SiC," Appl. Phys. Lett. , vol. 82, pp. 4726-4728, 2003.
    [39] T. Ishikawa, Y. Abe, M. Kawamura, and K. Sasaki, " Formation process and electrical property of IrO2 thin films prepared by reactive sputtering," Jpn. J. Appl. Phys., vol. 42, pp. 213-216, 2003.
    [40] R. S. Chen, H. M. Chang, Y. S. Huang, D. S. Tsai, S. Chattopadhyay, and K. H. Chen, "Growth and characterization of vertically aligned self-assembled IrO2 nanotubes on oxide substrates," J. crystal growth, vol. 271, pp. 105-112, 2004.

    Chapter 5
    [1] O. K. Jani, "Development of wide-band gap InGaN solar cells for high-efficiency photovoltaics," 2008.
    [2] P. Perlin, T. Suski, H. Teisseyre, M. Leszczynski, I. Grzegory, J. Jun, S. Porowski, P. Bogusławski, J. Bernholc, J. C. Chervin, A. Polian, and T. D. Moustakas, " Towards the identification of the dominant donor in GaN," Phys. Rev. Lett., vol. 75, pp. 296-299, 1995.
    [3] H. P. Maruska and J. J. Tietjen, "The preparation and properties of vapor-deposited single-crystal-line GaN," Appl. Phys. Lett., vol. 15, pp. 327-329, 1969.

    無法下載圖示 校內:2015-07-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE