簡易檢索 / 詳目顯示

研究生: 鄭凱文
Chang, Kai-Wen
論文名稱: 摻雜對石墨烯電極特性之影響
Effect of doping on the properties of graphene electrodes
指導教授: 蘇彥勳
Su, Yen-Hsun
共同指導教授: 謝馬利歐
Mario Hofmann
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 111
中文關鍵詞: 石墨烯摻雜電荷轉移效率
外文關鍵詞: graphene, doping, Charge Transfer Rate, Morphology
相關次數: 點閱:58下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯是一種很有前景的材料,可應用於電子,感應器和儲能設備中的電極。為了增加其本身能帶結構賦予之固有電荷載子濃度,必須進行電子或電洞之電荷摻雜。本篇論文研究電荷與石墨烯之間的相互作用,以了解摻雜石墨烯電極的極限與應用。
    首先,對於摻雜劑和石墨烯之間的電荷轉移研究發現,有校的電荷轉移效率只有預期值的5%。該問題源自於小摻雜劑群體的幾何電容非常的低,於是我們發展了一個處理步驟的組合以增加摻雜劑簇尺寸和幾何電容。我們證明增加的表面能可以將電荷轉移效率提高到70%,並生產出一個超透明的電極,其在97%透射率下顯示出106Ω/ sq 的電阻,這是摻雜單層石墨烯的最高報告性能,並且與市面上販售之透明導體產品相當。
    然而,我們發現增加摻雜劑群體的尺寸對石墨烯中的載流子傳輸產生負面的影響。使用原位光譜和霍爾效應的量測,我們證明在高摻雜劑覆蓋下會發生載流子的滲透傳輸,這降低了載流子遷移率卻不能增加載流子濃度,導致電阻增加,這代表了對有效摻雜的第一次觀察。
    最後,我們揭示了石墨烯在電化學電極中的應用,將會受摻雜劑之存在與其特性而影響。在一片石墨烯中使用微米級電極陣列,在不同位置有不同的摻雜程度,我們發現其很大的影響了異質電荷轉移率(HCT)。靜電摻雜可以利用這種現象並動態調整石墨烯的電化學反應性超過一個數量級。該新特性可用於增強電化學阻抗譜的靈敏度。

    Graphene is a promising material for application as electrodes in electronic, sensing and energy storage devices. To increase the intrinsic charge carrier concentration imparted by its unique band structure, doping with charge donators or acceptors has to be carried out. This thesis investigates the interaction of charges with graphene to identify the limitations and applications of doped graphene electrodes.
    First, the study of the charge transfer between dopants and graphene reveals a limited charge transfer efficiency as low as 5% of the expected values. This issue was found to originate from the low geometrical capacitance of small dopant clusters and a combination of treatment steps was developed to increase the dopant cluster size and eometrical capacitance. Increased surface energy was demonstrated to increase the charge transfer efficiency to 70% and yield ultra-transparent electrodes that showed resistances of 106 Ω/sq at 97% transmittance which represents the highest reported performance for doped
    single layer graphene and is on par with commercially available transparent conductors.
    However, the increase in dopant cluster size was found to negatively impact the carrier transport in graphene. Using in-situ spectroscopic and Hall effect characterization we demonstrate that at high dopant coverage percolative transport occurs that decreases the carrier mobility without increasing the carrier concentration resulting in an increasing resistance which represents the first observation of a window for useful doping.
    Finally, we show that the application of graphene to electrochemical electrodes is affected by the presence and character of dopants. Employing micro-electrode arrays within one sheet of graphene we find large variations in the heterogeneous charge transfer rate (HCT) that correlates with the spatially varying doping level. Electrostatic doping can exploit this phenomenon and dynamically tune the electrochemical reactivity of graphene over an order of magnitude. This novel property was applied to enhance the sensitivity of Electrochemical Impedance Spectroscopy.

    Abstract I 中文摘要 II 誌謝 III Table of contants IV List of figures VII 1 Introduction 1 1-1 Graphene History 1 1-2 Electronic Properties of Graphene 2 1-3 Optical properties of graphene 4 1-4 Graphene doping 5 1-5 Graphene electrochemistry 7 1-5.1 Electrochemistry basic7 1-5.2 Edge plane and Basal plane 10 1-5.3 Charge Transfer Kinetic of Graphene 13 1-5.4 Defect Density and Heterogeneous Electron Transfer Rate 15 2 Experimental Methods 17 2-1 Graphene fabrication 17 2-2 PMMA removal 19 2-3 UV ozone surface treatment 21 2-3.1 Extraction of binding energy 22 2-3.2 Detailed Raman characterization 22 2-3.3 Quantifying adsorbate coverage by Raman spectroscopy 24 2-3.4 EFM measurements 26 2-3.5 Impact of work function on charge transfer efficiency 27 2-3.6 Graphene/DI water contact angle 28 2-4 Gold Doping 30 2-4.1 concentration dependent work function 32 2-4.2 Figure of merit 33 2-5 Electrochemical Process 37 2-5.1 Pattern Design 37 2-5.2 Electrolyte Preparation 40 2-5.3 Cyclic Voltammetry 42 2-5.4 Raman mapping 47 2-5.5 Diffusion simulation 48 2-5.6 Cyclic voltammetry Fitting 51 2-5.8 EIS 52 2-5.9 Connection between SMU and potentiostat 58 3 Dopant morphology as the factor limiting graphene conductivity 61 3-1 Dopant Morphology 64 3-2 Doping limitation 67 3-3 Conclusion 72 4 Increasing the doping efficiency by surface energy control 74 4-1 Charge Transfer Efficiency 77 4-2 Surface Energy Control 82 4-1 Conclusions 86 5 Electrostatic control over the electrochemical reactivity of graphene 90 5-1 Graphene Electrode Reaction Rate 92 5-2 Back Gate controlling reaction rate 98 5-3 conclusion 100 6 Conclusion 102 7 References 104 8 Appendix 111

    1. Simpson, C. D.; Brand, J. D.; Berresheim, A. J.; Przybilla, L.; Rader, H. J.; Mullen, K.,
    Synthesis of a giant 222 carbon graphite sheet. Chem-Eur J 8, 6, 1424-1429, 2002.
    2. Novoselov, K. S., et al., Electric field effect in atomically thin carbon films. Science
    306, 5696, 666-669, 2004.
    3. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P., Experimental observation of the
    quantum Hall effect and Berry's phase in graphene. Nature 438, 7065, 201-204, 2005.
    4. Yoon, D.; Moon, H.; Cheong, H.; Choi, J. S.; Choi, J. A.; Park, B. H., Variations in the
    Raman Spectrum as a Function of the Number of Graphene Layers. J Korean Phys Soc 55,
    3, 1299-1303, 2009.
    5. Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L., Spatially
    resolved raman spectroscopy of single- and few-layer graphene. Nano Lett 7, 2, 238-242,
    2007.
    6. Heller, I.; Kong, J.; Williams, K. A.; Dekker, C.; Lemay, S. G., Electrochemistry at singlewalled
    carbon nanotubes: The role of band structure and quantum capacitance. Journal of
    the American Chemical Society 128, 22, 7353-7359, 2006.
    7. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.;
    Geim, A. K., Two-dimensional atomic crystals. P Natl Acad Sci USA 102, 30, 10451-10453,
    2005.
    8. Guex, L. G., et al., Experimental review: chemical reduction of graphene oxide (GO) to
    reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9, 27, 9562-9571, 2017.
    9. Zhu, S. E.; Yuan, S. J.; Janssen, G. C. A. M., Optical transmittance of multilayer
    graphene. Epl-Europhys Lett 108, 1, 2014.
    10. Jussila, H.; Yang, H.; Granqvist, N.; Sun, Z. P., Surface plasmon resonance for
    characterization of large-area atomic-layer graphene film. Optica 3, 2, 151-158, 2016.
    11. Lin, X.; Xu, Y.; Zhang, B. L.; Hao, R.; Chen, H. S.; Li, E. P., Unidirectional surface
    plasmons in nonreciprocal graphene. New J Phys 15, 2013.
    12. McCreery, R. L., Advanced carbon electrode materials for molecular electrochemistry.
    Chem. Rev. 108, 7, 2646-2687, 2008.
    13. Lee, H.; Paeng, K.; Kim, I. S., A review of doping modulation in graphene. Synthetic
    Met 244, 36-47, 2018.
    14. Kim, K. K.; Reina, A.; Shi, Y. M.; Park, H.; Li, L. J.; Lee, Y. H.; Kong, J., Enhancing the
    conductivity of transparent graphene films via doping. Nanotechnology 21, 28, 2010.
    15. Shi, Y.; Kim, K. K.; Reina, A.; Hofmann, M.; Li, L. J.; Kong, J., Work function engineering
    of graphene electrode via chemical doping. ACS Nano 4, 5, 2689-94, 2010.
    105
    16. Brownson, D. A.; Banks, C. E., Graphene electrochemistry: an overview of potential
    applications. Analyst 135, 11, 2768-78, 2010.
    17. Jin, B. K.; Zhang, J. R.; Zhang, Z. X., Theory and application of cyclic voltammetry for
    measurement of fast electrode kinetics at microdisk electrode. Chinese J Chem 14, 4, 338-
    347, 1996.
    18. Brownson, D. A. C.; Banks, C. E., Graphene electrochemistry: an overview of potential
    applications. Analyst 135, 11, 2768-2778, 2010.
    19. Davies, T. J.; Hyde, M. E.; Compton, R. G., Nanotrench arrays reveal insight into
    graphite electrochemistry. Angew Chem Int Edit 44, 32, 5121-5126, 2005.
    20. Lai, S. C. S.; Patel, A. N.; McKelvey, K.; Unwin, P. R., Definitive Evidence for Fast
    Electron Transfer at Pristine Basal Plane Graphite from High-Resolution Electrochemical
    Imaging. Angew Chem Int Edit 51, 22, 5405-5408, 2012.
    21. Banks, C. E.; Compton, R. G., New electrodes for old: from carbon nanotubes to edge
    plane pyrolytic graphite. Analyst 131, 1, 15-21, 2006.
    22. Li, W.; Tan, C.; Lowe, M. A.; Abruna, H. D.; Ralph, D. C., Electrochemistry of Individual
    Monolayer Graphene Sheets. Acs Nano 5, 3, 2264-2270, 2011.
    23. Nicholson, R. S., Theory and Application of Cyclic Voltammetry for Measurement of
    Electrode Reaction Kinetics. Anal Chem 37, 11, 1351-+, 1965.
    24. Ijsseling, F. P., Electrochemical Methods in Crevice Corrosion Testing - Report
    Prepared for the Working Party Physicochemical Methods of Corrosion - Fundamentals
    and Applications of the European-Federation-of-Corrosion. Werkst Korros 32, 9, 389-390,
    1981.
    25. Velicky, M., et al., Electron Transfer Kinetics on Mono- and Multilayer Graphene. Acs
    Nano 8, 10, 10089-10100, 2014.
    26. Zhong, J.-H., et al., Quantitative correlation between defect density and
    heterogeneous electron transfer rate of single layer graphene. Journal of the American
    Chemical Society 136, 47, 16609-16617, 2014.
    27. Hsieh, Y.-P.; Hofmann, M.; Kong, J., Promoter-assisted chemical vapor deposition of
    graphene. Carbon 67, 417-423, 2014.
    28. Cancado, L. G., et al., Quantifying Defects in Graphene via Raman Spectroscopy at
    Different Excitation Energies. Nano Lett 11, 8, 3190-3196, 2011.
    29. Lee, G.; Lee, B.; Kim, J.; Cho, K., Ozone Adsorption on Graphene: Ab Initio Study and
    Experimental Validation. J Phys Chem C 113, 32, 14225-14229, 2009.
    30. Tao, H. H.; Moser, J.; Alzina, F.; Wang, Q.; Sotomayor-Torres, C. M., The Morphology
    of Graphene Sheets Treated in an Ozone Generator. J Phys Chem C 115, 37, 18257-18260,
    2011.
    31. Lopez, V., et al., Chemical Vapor Deposition Repair of Graphene Oxide: A Route to
    Highly Conductive Graphene Monolayers. Adv Mater 21, 46, 4683-+, 2009.
    106
    32. Voggu, R.; Das, B.; Rout, C. S.; Rao, C. N. R., Effects of charge transfer interaction of
    graphene with electron donor and acceptor molecules examined using Raman
    spectroscopy and cognate techniques. J Phys-Condens Mat 20, 47, 2008.
    33. Yan, J. A.; Chou, M. Y., Oxidation functional groups on graphene: Structural and
    electronic properties. Phys Rev B 82, 12, 2010.
    34. Lilliu, S., et al., EFM data mapped into 2D images of tip-sample contact potential
    difference and capacitance second derivative. Sci Rep-Uk 3, 2013.
    35. Klier, K., Theorie Der Randschicht Fur Einen Begrenzten Krystall Des Adsorbens.
    Collect Czech Chem C 27, 4, 920-&, 1962.
    36. Shin, H. J., et al., Control of Electronic Structure of Graphene by Various Dopants and
    Their Effects on a Nanogenerator. Journal of the American Chemical Society 132, 44,
    15603-15609, 2010.
    37. Shi, Y.; Kim, K. K.; Reina, A.; Hofmann, M.; Li, L. J.; Kong, J., Work function engineering
    of graphene electrode via chemical doping. ACS Nano 4, 5, 2689-94, 2010.
    38. Iqbal, M. Z.; Siddique, S.; Iqbal, M. W.; Eom, J., Formation of p-n junction with stable
    p-doping in graphene field effect transistors using deep UV irradiation. J Mater Chem C 1,
    18, 3078-3083, 2013.
    39. De, S.; Coleman, J. N., Are There Fundamental Limitations on the Sheet Resistance
    and Transmittance of Thin Graphene Films? Acs Nano 4, 5, 2713-2720, 2010.
    40. Dressel, M. G., G., Electrodynamics of Solids: Optical Properties of Electrons in
    Matter. 2002.
    41. Khrapach, I.; Withers, F.; Bointon, T. H.; Polyushkin, D. K.; Barnes, W. L.; Russo, S.;
    Craciun, M. F., Novel Highly Conductive and Transparent Graphene-Based Conductors. Adv
    Mater 24, 21, 2844-2849, 2012.
    42. Laviron, E., General Expression of the Linear Potential Sweep Voltammogram in the
    Case of Diffusionless Electrochemical Systems. J Electroanal Chem 101, 1, 19-28, 1979.
    43. Oldham, K. B.; Myland, J. C., Extracting parameter values from quasireversible cyclic
    voltammograms. J Solid State Electr 16, 12, 3691-3693, 2012.
    44. Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K., A
    roadmap for graphene. Nature 490, 7419, 192-200, 2012.
    45. Katsnelson, M. I.; Novoselov, K. S., Graphene: New bridge between condensed
    matter physics and quantum electrodynamics. Solid State Commun 143, 1-2, 3-13, 2007.
    46. Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M., Chargedimpurity
    scattering in graphene. Nature Physics 4, 5, 377-381, 2008.
    47. Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S., A self-consistent theory for
    graphene transport. P Natl Acad Sci USA 104, 47, 18392-18397, 2007.
    48. Shin, H.-J., et al., Control of Electronic Structure of Graphene by Various Dopants and
    Their Effects on a Nanogenerator. Journal of the American Chemical Society 132, 44,
    107
    15603-15609, 2010.
    49. Reich, E. S., Phosphorene excites materials scientists. Nature 506, 7486, 19-19, 2014.
    50. Sljivancanin, Z.; Milosevic, A. S.; Popovic, Z. S.; Vukajlovic, F. R., Binding of atomic
    oxygen on graphene from small epoxy clusters to a fully oxidized surface. Carbon 54, 482-
    488, 2013.
    51. Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M. S., Raman
    spectroscopy of graphene and carbon nanotubes. Advances in Physics 60, 3, 413-550,
    2011.
    52. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 6, 3, 183-191,
    2007.
    53. Wallace, P. R., The Band Theory of Graphite. Phys Rev 71, 9, 622-634, 1947.
    54. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 6, 3, 183-91, 2007.
    55. Lee, J., et al., Synergetic electrode architecture for efficient graphene-based flexible
    organic light-emitting diodes. Nat Commun 7, 11791, 2016.
    56. Gorkina, A. L., et al., Transparent and conductive hybrid graphene/carbon nanotube
    films. Carbon 100, 501-507, 2016.
    57. Abdullah-Al-Galib, M.; Hou, B.; Shahriad, T.; Zivanovic, S.; Radadia, A. D., Stability of
    few layer graphene films doped with gold (III) chloride. Appl. Surf. Sci. 366, 78-84, 2016.
    58. Pham, V. P.; Kim, K. H.; Jeon, M. H.; Lee, S. H.; Kim, K. N.; Yeom, G. Y., Low damage
    pre-doping on CVD graphene/Cu using a chlorine inductively coupled plasma. Carbon 95,
    664-671, 2015.
    59. Hwang, E.; Adam, S.; Sarma, S. D., Carrier transport in two-dimensional graphene
    layers. Physical review letters 98, 18, 186806, 2007.
    60. Kasry, A.; Kuroda, M. A.; Martyna, G. J.; Tulevski, G. S.; Bol, A. A., Chemical Doping of
    Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes. Acs
    Nano 4, 7, 3839-3844, 2010.
    61. Shin, D. H.; Lee, K. W.; Lee, J. S.; Kim, J. H.; Kim, S.; Choi, S. H., Enhancement of the
    effectiveness of graphene as a transparent conductive electrode by AgNO3 doping.
    Nanotechnology 25, 12, 2014.
    62. Khrapach, I.; Withers, F.; Bointon, T. H.; Polyushkin, D. K.; Barnes, W. L.; Russo, S.;
    Craciun, M. F., Novel highly conductive and transparent graphene-based conductors. Adv
    Mater 24, 21, 2844-9, 2012.
    63. Lee, H., et al., A graphene-based electrochemical device with thermoresponsive
    microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11, 6, 566-72, 2016.
    64. Zanjani, S. M. M.; Sadeghi, M. M.; Holt, M.; Chowdhury, S. F.; Tao, L.; Akinwande, D.,
    Enhanced sensitivity of graphene ammonia gas sensors using molecular doping. Appl.
    Phys. Lett. 108, 3, 2016.
    65. Xu, Y. H.; Liu, J. Q., Graphene as Transparent Electrodes: Fabrication and New
    108
    Emerging Applications. Small 12, 11, 1400-1419, 2016.
    66. Lee, H., et al., A graphene-based electrochemical device with thermoresponsive
    microneedles for diabetes monitoring and therapy. Nat Nano 11, 6, 566-572, 2016.
    67. Oh, S.; Kim, B.-J.; Kim, J., Layer-by-layer AuCl3 doping of stacked graphene films.
    physica status solidi (RRL) – Rapid Research Letters 8, 5, 441-444, 2014.
    68. Kim, K. K.; Reina, A.; Shi, Y.; Park, H.; Li, L. J.; Lee, Y. H.; Kong, J., Enhancing the
    conductivity of transparent graphene films via doping. Nanotechnology 21, 28, 285205,
    2010.
    69. Gunes, F., et al., Layer-by-layer doping of few-layer graphene film. ACS nano 4, 8,
    4595-600, 2010.
    70. Acton, Q. A., Acrylates—Advances in Research and Application: 2013 Edition.
    ScholarlyEditions: 2013.
    71. Kim, K. S., et al., Large-scale pattern growth of graphene films for stretchable
    transparent electrodes. Nature 457, 7230, 706-10, 2009.
    72. Kim, K. K.; Reina, A.; Shi, Y.; Park, H.; Li, L. J.; Lee, Y. H.; Kong, J., Enhancing the
    conductivity of transparent graphene films via doping. Nanotechnology 21, 28, 285205,
    2010.
    73. Hsieh, Y. P.; Chiang, W. Y.; Tsai, S. L.; Hofmann, M., Scalable production of graphene
    with tunable and stable doping by electrochemical intercalation and exfoliation. PCCP 18,
    1, 339-343, 2016.
    74. Zhang, Y.; Pluchery, O.; Caillard, L.; Lamic-Humblot, A. F.; Casale, S.; Chabal, Y. J.;
    Salmeron, M., Sensing the charge state of single gold nanoparticles via work function
    measurements. Nano Lett. 15, 1, 51-5, 2015.
    75. Kim, S. M., et al., Role of anions in the AuCl3-doping of carbon nanotubes. Acs Nano
    5, 2, 1236-42, 2011.
    76. Ali, S.; Myasnichenko, V. S.; Neyts, E. C., Size-dependent strain and surface energies
    of gold nanoclusters. Phys. Chem. Chem. Phys. 18, 2, 792-800, 2016.
    77. Wang, W.; Ruiz, I.; Lee, I.; Zaera, F.; Ozkan, M.; Ozkan, C. S., Improved functionality of
    graphene and carbon nanotube hybrid foam architecture by UV-ozone treatment.
    Nanoscale 7, 16, 7045-50, 2015.
    78. Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.;
    Casiraghi, C., Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano
    Lett 12, 8, 3925-3930, 2012.
    79. Xu, Z.; Ao, Z.; Chu, D.; Younis, A.; Li, C. M.; Li, S., Reversible hydrophobic to
    hydrophilic transition in graphene via water splitting induced by UV irradiation. Sci Rep 4,
    6450, 2014.
    80. Hofmann, M.; Hsieh, Y. P.; Chang, K. W.; Tsai, H. G.; Chen, T. T., Dopant morphology as
    the factor limiting graphene conductivity. Sci Rep-Uk 5, 2015.
    109
    81. Lara-Avila, S.; Moth-Poulsen, K.; Yakimova, R.; Bjornholm, T.; Fal'ko, V.; Tzalenchuk, A.;
    Kubatkin, S., Non-volatile photochemical gating of an epitaxial graphene/polymer
    heterostructure. Adv. Mater. 23, 7, 878-82, 2011.
    82. Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M., Polymeric systems for
    controlled drug release. Chem. Rev. 99, 11, 3181-98, 1999.
    83. Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C.; Suenaga, K.; Chiu, P. W., Graphene annealing:
    how clean can it be? Nano Lett. 12, 1, 414-9, 2012.
    84. Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M., Electrochemistry of Graphene and
    Related Materials. Chem. Rev. 114, 14, 7150-7188, 2014.
    85. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The
    electronic properties of graphene. Rev Mod Phys 81, 1, 109-162, 2009.
    86. Brownson, D. A. C.; Kampouris, D. K.; Banks, C. E., Graphene electrochemistry:
    fundamental concepts through to prominent applications. Chem. Soc. Rev. 41, 21, 6944-
    6976, 2012.
    87. Kim, C. H.; Frisbie, C. D., Field Effect Modulation of Outer-Sphere Electrochemistry at
    Back Gated, Ultrathin ZnO Electrodes. Journal of the American Chemical Society 138, 23,
    7220-7223, 2016.
    88. Ferrari, A. C., et al., Science and technology roadmap for graphene, related twodimensional
    crystals, and hybrid systems. Nanoscale 7, 11, 4598-4810, 2015.
    89. Xu, H.; Wu, J.; Feng, Q.; Mao, N.; Wang, C.; Zhang, J., High responsivity and gate
    tunable graphene-MoS2 hybrid phototransistor. Small 10, 11, 2300-6, 2014.
    90. Yang, H., et al., Graphene Barristor, a Triode Device with a Gate-Controlled Schottky
    Barrier. Science 336, 6085, 1140-1143, 2012.
    91. Toth, P. S.; Velicky, M.; Slater, T. J. A.; Worrall, S. D.; Haigh, S. J., Hydrogen evolution
    and capacitance behavior of Au/Pd nanoparticle-decorated graphene heterostructures.
    Appl Mater Today 8, 125-131, 2017.
    92. Hsieh, Y.-P.; Shih, C.-H.; Chiu, Y.-J.; Hofmann, M., High-Throughput Graphene
    Synthesis in Gapless Stacks. Chem Mater 28, 1, 40-43, 2016.
    93. Hsieh, Y. P.; Chen, D. R.; Chiang, W. Y.; Chen, K. J.; Hofmann, M., Recrystallization of
    copper at a solid interface for improved CVD graphene growth. Rsc Adv 7, 7, 3736-3740,
    2017.
    94. Cançado, L. G., et al., Quantifying defects in graphene via Raman spectroscopy at
    different excitation energies. arXiv preprint arXiv:1105.0175 2011.
    95. Bolotin, K. I., et al., Ultrahigh electron mobility in suspended graphene. Solid State
    Commun 146, 9, 351-355, 2008.
    96. Punckt, C.; Pope, M. A.; Liu, J.; Lin, Y. H.; Aksay, I. A., Electrochemical Performance of
    Graphene as Effected by Electrode Porosity and Graphene Functionalization. Electroanal
    22, 23, 2834-2841, 2010.
    110
    97. Wang, Y.; Kim, C. H.; Yoo, Y.; Johns, J. E.; Frisbie, C. D., Field Effect Modulation of
    Heterogeneous Charge Transfer Kinetics at Back-Gated Two-Dimensional MoS2 Electrodes.
    Nano Lett 17, 12, 7586-7592, 2017.
    98. Chang, K. W.; Hsieh, Y. P.; Ting, C. C.; Su, Y. H.; Hofmann, M., Increasing the doping
    efficiency by surface energy control for ultra-transparent graphene conductors. Sci Rep-Uk
    7, 2017.
    99. Samaddar, S.; Yudhistira, I.; Adam, S.; Courtois, H.; Winkelmann, C., Charge puddles in
    graphene near the Dirac point. Phys Rev Lett 116, 12, 126804, 2016.
    100. Das, A., et al., Monitoring dopants by Raman scattering in an electrochemically topgated
    graphene transistor. Nature Nanotechnology 3, 4, 210-215, 2008.
    101. Hsieh, Y. P.; Kuo, C. L.; Hofmann, M., Ultrahigh mobility in polyolefin-supported
    graphene. Nanoscale 8, 3, 1327-1331, 2016.
    102. Laviron, E., General expression of the linear potential sweep voltammogram in the
    case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and
    Interfacial Electrochemistry 101, 1, 19-28, 1979.
    103. Laviron, E., General expression of the linear potential sweep voltammogram in the
    case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and
    Interfacial Electrochemistry 101, 1, 19-28, 1979.
    104. Morozov, S. V.; Novoselov, K. S.; Geim, A. K., Electron transport in graphene. Phys-
    Usp+ 51, 7, 744-748, 2008.
    105. Wang, Q. H., et al., Understanding and controlling the substrate effect on graphene
    electron-transfer chemistry via reactivity imprint lithography. Nat Chem 4, 9, 724-732,
    2012.
    106. Brownson, D. A.; Varey, S. A.; Hussain, F.; Haigh, S. J.; Banks, C. E., Electrochemical
    properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene. Nanoscale 6,
    3, 1607-21, 2014.
    107. Allen J. Bard, L. R. F., Electrochemical Methods: Fundamentals and Applications. 2001.

    下載圖示 校內:2023-12-01公開
    校外:2023-12-01公開
    QR CODE