| 研究生: |
王燕霞 Wang, Yen-Hsia |
|---|---|
| 論文名稱: |
製備鈷硼觸媒並應用於硼氫化鈉產氫之研究 Preparation of Co-B Catalyst for the Hydrogen Generation of Sodium Borohydride |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 共同指導教授: |
凌漢辰
Ling, Han-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 硼氫化鈉 、產氫 、鈷 、觸媒 、化學還原 、無電電鍍 |
| 外文關鍵詞: | Hydrogen generation, Chemical reduction, Electroless plating, Co-B catalyst, NaBH4 |
| 相關次數: | 點閱:148 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面對石油耗竭和溫室效應的衝擊,科學家努力找尋替代能源之時際,硼氫化鈉產氫成為近幾年持續被關注的新型能源,其具有快速產氫、極高安定性、不可燃、潔淨能源等優點,但其水解產氫反應緩慢,必須找尋適合之觸媒增快且控制其氫氣釋放速率。
本研究透過化學還原法和無電電鍍法兩種製程分別製備 Co-B powder 觸媒和 Co-B/Ni foam 觸媒,探討鍛燒溫度、還原劑濃度、螯合劑濃度、穩定劑濃度對觸媒的影響,透過 SEM 觀察其顆粒狀形貌、XRD 鑑定其結構、AA 分析含有的 Co/B 莫耳數比。在常溫常壓下進行硼氫化鈉鹼性溶液的水解產氫反應,探討不同硼氫化鈉濃度、氫氧化鈉濃度、溫度等對產氫之影響。
在本篇研究中發現化學還原法製備的 Co-B powder觸媒在不同鍛燒溫度下(60 ~ 700℃),觸媒結構由非晶相結構轉變成結晶相結構,且觸媒外觀亦由圓粒狀轉變成片狀結構。本研究打破傳統觸媒需要鍛燒的觀念,發現不需經過高溫鍛燒即可以讓Co-B觸媒擁有極佳之產氫速率,如此可以大大減少能源的耗費。在室溫 (25 ℃) 下,10 wt% NaBH4 和 1 wt% NaOH溶液中,即可以促進產氫速率 761 mL/min-g cat.。而無電電鍍法製備的 Co-B/Ni foam 觸媒,初次產氫速率為 10900 mL/min-g CoB,而後透過改良無電鍍藥浴成分,0.26 M NaBH4 + 0.125 M NaOH + 0.1 M CoCl2 + 3.13 % NH4OH + 0.75 M NH4Cl 時,製成最佳之產氫觸媒,其產氫速率為 13900 mL/min-g CoB。而後在室溫下,最佳產氫操作條件方面,當硼氫化鈉濃度由 1 wt% 增至 20 wt%,產氫速率為從 7300 mL/min-g CoB 增至最高 13900 mL/min-g CoB 又降到 10300 mL/min-g CoB;改變氫氧化鈉濃度,由 1 wt% 到15 wt%,產氫速率為從 9400 mL/min-g CoB 增至最高 13900 mL/min-g CoB 後,也稍降到 10500 mL/min-g CoB。增加反應溫度,產氫速率也會變快,由產氫速率之對數值,計算其活化能為 47.7 kJ/mol。
對於硼氫化鈉產氫系統而言,本研究證實Co-B觸媒是一個製作簡單、高產氫效率且低成本的觸媒。
To develop a low-cost high-performance catalyst for hydrogen generation from base-stabilized NaBH4 solution, Co-B powder catalyst were prepared by chemical reduction method and Co-B/Ni foam catalyst were prepared by electroless plating method.
In this study, we discuss the process of catalyst preparation affect the hydrogen generation. The prepared Co-B powder catalyst exhibited the hydrogen generation rate of 761 mL/min-g cat. from 5 wt% NaBH4 + 10 wt% NaOH solution at 25 o C. In fact, the calculation didn’t increase the hydrogen generation rate. And the prepared Co-B/Ni foam powder catalyst showed 10900 mL/min-g cat. under the same condition. Besides, catalyst had the highest hydrogen generation rate of 13858 mL/min-g cat. which was made from bath with 0.26 M NaBH4, 0.125 M NaOH, 0.1 M CoCl2, 3.13 % NH4OH, and 0.75 M NH4Cl. SEM, XRD, and AA analysis revealed that the prepared Co-B catalyst consisted of amorphous Co-B compound with particle-like structure.
To design a hydrogen generator, hydrogen generation rate was measured by using the Co-B catalyst as a function of NaBH4 concentration, NaOH (a base-stabilizer) concentration, and solution temperature. With increasing solution temperature, hydrogen generation rates increased and activation energy for the hydrogen generation reaction was measured to be 47.7 kJ/mol. With increasing NaBH4 concentration from 1 to 20 wt% in NaBH4 and 5 wt% NaOH solution at 25 o C, at first, hydrogen generation rate increased from 7300 to 15900 mL/min-g CoB and then decreased to 10300 mL/min-g CoB. While it increased from 9400 to 15900 mL/min-g CoB with increasing NaOH concentration from 1 to 10 wt% in 10 wt% NaBH4 and NaOH solution at 25 o C. From these experimental results, the Co-B/Ni foam catalyst is a useful and high efficiency catalyst.
Akdim, O., Demirci, U. B., and Miele, P.: Highly efficient acid-treated cobalt catalyst for hydrogen generation from NaBH4 hydrolysis. International Journal of Hydrogen Energy 34, 4780-4787. (2009)
Amendola, S. C., Sharp-Goldman, S. L., Janjua, M. S., Kelly, M. T., Petillo, P. J., and Binder, M.: An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources 85, 186-189. (2000a)
Amendola, S. C., Sharp-Goldman, S. L., Janjua, M. S., Spencer, N. C., Kelly, M. T., Petillo, P. J., and Binder, M.: A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. International Journal of Hydrogen Energy 25, 969-975. (2000b)
Chen, C.-W., Chen, C.-Y., and Huang, Y.-H.: Method of preparing Ru-immobilized polymer-supported catalyst for hydrogen generation from NaBH4 solution. International Journal of Hydrogen Energy 34, 2164-2173. (2009)
Chen, Y., and Kim, H.: Ni/Ag/silica nanocomposite catalysts for hydrogen generation from hydrolysis of NaBH4 solution. Materials Letters 62, 1451-1454. (2008a)
Chen, Y., and Kim, H.: Use of a nickel-boride-silica nanocomposite catalyst prepared by in-situ reduction for hydrogen production from hydrolysis of sodium borohydride. Fuel Processing Technology 89, 966-972. (2008b)
Cho, K. W., and Kwon, H. S.: Effects of electrodeposited Co and Co-P catalysts on the hydrogen generation properties from hydrolysis of alkaline sodium borohydride solution. Catalysis Today 120, 298-304. (2007)
Dai, H.-B., Gao, L.-L., Liang, Y., Kang, X.-D., and Wang, P. Promoted hydrogen generation from ammonia borane aqueous solution using cobalt-molybdenum-boron/nickel foam catalyst. Journal of Power Sources In Press, Accepted Manuscript.
Dai, H.-B., Liang, Y., Ma, L.-P., and Wang, P.: New Insights into Catalytic Hydrolysis Kinetics of Sodium Borohydride from Michaelis−Menten Model. The Journal of Physical Chemistry C 112, 15886-15892. (2008a)
Dai, H.-B., Liang, Y., Wang, P., and Cheng, H.-M.: Amorphous cobalt-boron/nickel foam as an effective catalyst for hydrogen generation from alkaline sodium borohydride solution. Journal of Power Sources 177, 17-23. (2008b)
Eom, K., Cho, K., and Kwon, H.: Effects of electroless deposition conditions on microstructures of cobalt-phosphorous catalysts and their hydrogen generation properties in alkaline sodium borohydride solution. Journal of Power Sources 180, 484-490. (2008)
Ersoz, Y., Yildirim, R., and Akin, A. N.: Development of an active platine-based catalyst for the reaction of H2 production from NaBH4. Chemical Engineering Journal 134, 282-287. (2007)
Fernandes, R., Patel, N., Miotello, A., and Filippi, M.: Studies on catalytic behavior of Co-Ni-B in hydrogen production by hydrolysis of NaBH4. Journal of Molecular Catalysis A: Chemical 298, 1-6. (2009)
Garron, A., Swierczynski, D., Bennici, S., and Auroux, A.: New insights into the mechanism of H2 generation through NaBH4 hydrolysis on Co-based nanocatalysts studied by differential reaction calorimetry. International Journal of Hydrogen Energy 34, 1185-1199. (2009)
Girardon, J.-S., Lermontov, A. S., Gengembre, L., Chernavskii, P. A., Griboval-Constant, A., and Khodakov, A. Y.: Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts. Journal of Catalysis 230, 339-352. (2005)
Gislon, P., Monteleone, G., and Prosini, P. P.: Hydrogen production from solid sodium borohydride. International Journal of Hydrogen Energy 34, 929-937. (2009)
Glavee, G. N., Klabunde, K. J., Sorensen, C. M., and Hadjapanayis, G. C.: Borohydride reductions of metal ions. A new understanding of the chemistry leading to nanoscale particles of metals, borides, and metal borates. Langmuir 8, 771-773. (1992)
Glavee, G. N., Klabunde, K. J., Sorensen, C. M., and Hadjipanayis, G. C.: Borohydride reduction of cobalt ions in water. Chemistry leading to nanoscale metal, boride, or borate particles. Langmuir 9, 162-169. (1993)
Hsueh, C.-L., Chen, C.-Y., Ku, J.-R., Tsai, S.-F., Hsu, Y.-Y., Tsau, F., and Jeng, M.-S.: Simple and fast fabrication of polymer template-Ru composite as a catalyst for hydrogen generation from alkaline NaBH4 solution. Journal of Power Sources 177, 485-492. (2008)
Hsueh, C.-L., Liu, C.-H., Chen, B.-H., Chen, C.-Y., Kuo, Y.-C., Hwang, K.-J., and Ku, J.-R.: Regeneration of spent-NaBH4 back to NaBH4 by using high-energy ball milling. International Journal of Hydrogen Energy 34, 1717-1725. (2009)
Hua, D., Hanxi, Y., Xinping, A., and Chuansin, C.: Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst. International Journal of Hydrogen Energy 28, 1095-1100. (2003)
Huang, Y., Wang, Y., Zhao, R., Shen, P. K., and Wei, Z.: Accurately measuring the hydrogen generation rate for hydrolysis of sodium borohydride on multiwalled carbon nanotubes/Co-B catalysts. International Journal of Hydrogen Energy 33, 7110-7115. (2008)
Ingersoll, J. C., Mani, N., Thenmozhiyal, J. C., and Muthaiah, A.: Catalytic hydrolysis of sodium borohydride by a novel nickel-cobalt-boride catalyst. Journal of Power Sources 173, 450-457. (2007)
Jeong, S. U., Cho, E. A., Nam, S. W., Oh, I. H., Jung, U. H., and Kim, S. H.: Effect of preparation method on Co-B catalytic activity for hydrogen generation from alkali NaBH4 solution. International Journal of Hydrogen Energy 32, 1749-1754. (2007)
Jeong, S. U., Kim, R. K., Cho, E. A., Kim, H. J., Nam, S. W., Oh, I. H., Hong, S. A., and Kim, S. H.: A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst. Journal of Power Sources 144, 129-134. (2005)
Kemmitt, T., and Gainsford, G. J.: Regeneration of sodium borohydride from sodium metaborate, and isolation of intermediate compounds. International Journal of Hydrogen Energy 34, 5726-5731. (2009)
Kim, J.-H., Lee, H., Han, S.-C., Kim, H.-S., Song, M.-S., and Lee, J.-Y.: Production of hydrogen from sodium borohydride in alkaline solution: Development of catalyst with high performance. International Journal of Hydrogen Energy 29, 263-267. (2004)
Kim, S. J., Lee, J., Kong, K. Y., Ryul Jung, C., Min, I.-G., Lee, S.-Y., Kim, H.-J., Nam, S. W., and Lim, T.-H.: Hydrogen generation system using sodium borohydride for operation of a 400 W-scale polymer electrolyte fuel cell stack. Journal of Power Sources 170, 412-418. (2007)
Kojima, Y., Suzuki, K.-i., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y., and Hayashi, H.: Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. International Journal of Hydrogen Energy 27, 1029-1034. (2002)
Komova, O. V., Simagina, V. I., Netskina, O. V., Kellerman, D. G., Ishchenko, A. V., and Rudina, N. A.: LiCoO2-based catalysts for generation of hydrogen gas from sodium borohydride solutions. Catalysis Today 138, 260-265. (2008)
Krishnan, P., Advani, S. G., and Prasad, A. K.: Cobalt oxides as Co2B catalyst precursors for the hydrolysis of sodium borohydride solutions to generate hydrogen for PEM fuel cells. International Journal of Hydrogen Energy 33, 7095-7102. (2008)
Krishnan, P., Hsueh, K.-L., and Yim, S.-D.: Catalysts for the hydrolysis of aqueous borohydride solutions to produce hydrogen for PEM fuel cells. Applied Catalysis B: Environmental 77, 206-214. (2007)
Krishnan, P., Yang, T.-H., Lee, W.-Y., and Kim, C.-S.: PtRu-LiCoO2--an efficient catalyst for hydrogen generation from sodium borohydride solutions. Journal of Power Sources 143, 17-23. (2005)
Li, T., Zhang, W., Lee, R. Z., and Zhong, Q.: Nickel-boron alloy catalysts reduce the formation of Trans fatty acids in hydrogenated soybean oil. Food Chemistry 114, 447-452. (2009)
Liang, J., Li, Y., Huang, Y., Yang, J., Tang, H., Wei, Z., and Shen, P. K.: Sodium borohydride hydrolysis on highly efficient Co-B/Pd catalysts. International Journal of Hydrogen Energy 33, 4048-4054. (2008)
Liu, B. H., and Li, Q.: A highly active Co-B catalyst for hydrogen generation from sodium borohydride hydrolysis. International Journal of Hydrogen Energy 33, 7385-7391. (2008)
Liu, B. H., and Li, Z. P.: A review: Hydrogen generation from borohydride hydrolysis reaction. Journal of Power Sources 187, 527-534. (2009)
Liu, B. H., Li, Z. P., and Chen, L. L.: Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH4-air battery. Journal of Power Sources 180, 530-534. (2008a)
Liu, B. H., Li, Z. P., and Suda, S.: Nickel- and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride. Journal of Alloys and Compounds 415, 299-293. (2006)
Liu, B. H., Li, Z. P., and Suda, S.: Solid sodium borohydride as a hydrogen source for fuel cells. Journal of Alloys and Compounds 468, 493-498. (2009a)
Liu, C.-H., Chen, B.-H., Hsueh, C.-L., Ku, J.-R., Jeng, M.-S., and Tsau, F.: Hydrogen generation from hydrolysis of sodium borohydride using Ni-Ru nanocomposite as catalysts. International Journal of Hydrogen Energy 34, 2153-2163. (2009b)
Liu, C.-H., Chen, B.-H., Hsueh, C.-L., Ku, J.-R., Tsau, F., and Hwang, K.-J.: Preparation of magnetic cobalt-based catalyst for hydrogen generation from alkaline NaBH4 solution. Applied Catalysis B: Environmental 91, 368-379. (2009c)
Liu, Y., Wang, Y., Xiao, L., Song, D., Wang, Y., Jiao, L., and Yuan, H.: Structure and electrochemical behaviors of a series of Co-B alloys. Electrochimica Acta 53, 2265-2271. (2008b)
Lupi, C., Dell'Era, A., and Pasquali, M.: Nickel-cobalt electrodeposited alloys for hydrogen evolution in alkaline media. International Journal of Hydrogen Energy 34, 2101-2106. (2009)
Marrero-Alfonso, E. Y., Gray, J. R., Davis, T. A., and Matthews, M. A.: Minimizing water utilization in hydrolysis of sodium borohydride: The role of sodium metaborate hydrates. International Journal of Hydrogen Energy 32, 4723-4730. (2007)
Park, J.-H., Shakkthivel, P., Kim, H.-J., Han, M.-K., Jang, J.-H., Kim, Y.-R., Kim, H.-S., and Shul, Y.-G.: Investigation of metal alloy catalyst for hydrogen release from sodium borohydride for polymer electrolyte membrane fuel cell application. International Journal of Hydrogen Energy 33, 1845-1852. (2008)
Patel, N., Fernandes, R., Guella, G., Kale, A., Miotello, A., Patton, B., and Zanchetta, C.: Structured and nanoparticle assembled Co-B thin films prepared by pulsed laser deposition: A very efficient catalyst for hydrogen production. Journal of Physical Chemistry C 112, 6968-6976. (2008)
Patel, N., Fernandes, R., and Miotello, A.: Hydrogen generation by hydrolysis of NaBH4 with efficient Co-P-B catalyst: A kinetic study. Journal of Power Sources 188, 411-420. (2009)
Patel, N., Guella, G., Kale, A., Miotello, A., Patton, B., Zanchetta, C., Mirenghi, L., and Rotolo, P.: Thin films of Co-B prepared by pulsed laser deposition as efficient catalysts in hydrogen producing reactions. Applied Catalysis A: General 323, 18-24. (2007)
Patel, N., Patton, B., Zanchetta, C., Fernandes, R., Guella, G., Kale, A., and Miotello, A.: Pd-C powder and thin film catalysts for hydrogen production by hydrolysis of sodium borohydride. International Journal of Hydrogen Energy 33, 287-292. (2008b)
Pena-Alonso, R., Sicurelli, A., Callone, E., Carturan, G., and Raj, R.: A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells. Journal of Power Sources 165, 315-323. (2007)
Pierella, L. B., Saux, C., Caglieri, S. C., Bertorello, H. R., and Bercoff, P. G.: Catalytic activity and magnetic properties of Co-ZSM-5 zeolites prepared by different methods. Applied Catalysis A: General 347, 55-61. (2008)
Pozio, A., De Francesco, M., Monteleone, G., Oronzio, R., Galli, S., D'Angelo, C., and Marrucci, M.: Apparatus for the production of hydrogen from sodium borohydride in alkaline solution. International Journal of Hydrogen Energy 33, 51-56. (2008)
Prasad, R. V., and Thakkar, N. V.: Study of cobalt complexes as catalysts in the decomposition of hydrogen peroxide. Journal of Molecular Catalysis 92, 9-20. (1994)
Rakap, M., and Özkar, S.: Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Applied Catalysis B: Environmental 91, 21-29. (2009)
Richardson, B. S., Birdwell, J. F., Pin, F. G., Jansen, J. F., and Lind, R. F.: Sodium borohydride based hybrid power system. Journal of Power Sources 145, 21-29. (2005)
Saha, R. K., and Khan, T. I.: Microstructural developments in TLP bonds using thin interlayers based on Ni-B coatings. Materials Characterization 60, 1001-1007. (2009)
Schlesinger, H. I., Brown, H. C., Finholt, A. E., Gilbreath, J. R., Hoekstra, H. R., and Hyde, E. K.: Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen1. Journal of the American Chemical Society 75, 215-219. (1953)
Shang, Y., and Chen, R. (2006): Hydrogen storage via the hydrolysis of NaBH4 basic solution: Optimization of NaBH4 concentration. Energy and Fuels 20, 2142-2148.
Song, D., Zhang, X., Jiang, W., Yuan, Y., Liu, Y., and Li, F.: Controllable fabrication of monodisperse Co-B hollow microspheres. Materials Letters 62, 4371-4373. (2008)
Stepanov, N., Uvarov, V., Popov, I., and Sasson, Y.: Study of by-product of NaBH4 hydrolysis and its behavior at a room temperature. International Journal of Hydrogen Energy 33, 7378-7384. (2008)
Suda, S., Li, Z.-P., Sun, Y.-M., Liu, B.-H., Morigasaki, N., and Hara, S.: Sodium borohydride as the hydrogen and protide source. TMS Annual Meeting, pp. 297. (2006)
Tong, D.-G., Chu, W., Zeng, X.-L., Tian, W., and Wang, D.: Synthesis of mesoporous Co-B alloy in room-temperature ionic liquids and its electrochemical properties. Materials Letters 63, 1555-1557. (2009)
Tong, D.-g., Han, X., Chu, W., Chen, H., and Ji, X.-Y.: Preparation of mesoporous Co-B catalyst via self-assembled triblock copolymer templates. Materials Letters 61, 4679-4682. (2007)
Walter, J. C., Zurawski, A., Montgomery, D., Thornburg, M., and Revankar, S.: Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts. Journal of Power Sources 179, 335-339. (2008)
Wang, P., and Kang, X.-d.: Hydrogen-rich boron-containing materials for hydrogen storage. Dalton Transactions, 5400-5413. (2008)
Wee, J.-H.: A comparison of sodium borohydride as a fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells. Journal of Power Sources 155, 329-339. (2006)
Wee, J.-H., Lee, K.-Y., and Kim, S. H.: Sodium borohydride as the hydrogen supplier for proton exchange membrane fuel cell systems. Fuel Processing Technology 87, 811-819. (2006)
Wu, C., Wu, F., Bai, Y., Yi, B., and Zhang, H.: Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution. Materials Letters 59, 1748-1751. (2005)
Wu, C., Zhang, H., and Yi, B.: Hydrogen generation from catalytic hydrolysis of sodium borohydride for proton exchange membrane fuel cells. Catalysis Today 93-95, 477-483. (2004)
Wu, Z., Ge, S., Zhang, M., Li, W., and Tao, K.: Synthesis of nickel nanoparticles supported on metal oxides using electroless plating: Controlling the dispersion and size of nickel nanoparticles. Journal of Colloid and Interface Science 330, 359-366. (2009)
Xu, D., Dai, P., Guo, Q., and Yue, X.: Improved hydrogen generation from alkaline NaBH4 solution using cobalt catalysts supported on modified activated carbon. International Journal of Hydrogen Energy 33, 7371-7377. (2008a)
Xu, D., Dai, P., Liu, X., Cao, C., and Guo, Q.: Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution. Journal of Power Sources 182, 616-620. (2008b)
Xu, D., Zhang, H., and Ye, W.: Hydrogen generation from hydrolysis of alkaline sodium borohydride solution using Pt/C catalyst. Catalysis Communications 8, 1767-1771. (2007)
Ye, W., Zhang, H., Xu, D., Ma, L., and Yi, B.: Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst. Journal of Power Sources 164, 544-548. (2007)
ZahmakIran, M., and Özkar, S.: Water dispersible acetate stabilized ruthenium(0) nanoclusters as catalyst for hydrogen generation from the hydrolysis of sodium borohyride. Journal of Molecular Catalysis A: Chemical 258, 95-103. (2006)
Zakharova, L. Y., Valeeva, F. G., Kudryavtseva, L. A., and Zhil'tsova, E. P.: The catalytic effect of the sodium dodecyl sulfate-hexanol-water reverse micellar system. Mendeleev Communications 9, 125-126. (1999)
Zaluska, A., and Zaluski, L.: New catalytic complexes for metal hydride systems. Journal of Alloys and Compounds 404-406, 706-711. (2005)
Zanchetta, C., Patton, B., Guella, G., and Miotello, A.: An integrated apparatus for production and measurement of molecular hydrogen. Measurement Science and Technology 18, 21-26. (2007)
Zhang, L., Li, W., Liu, J., Guo, C., Wang, Y., and Zhang, J.: Ethanol steam reforming reactions over Al2O3.SiO2-supported Ni-La catalysts. Fuel 88, 511-518. (2009)
Zhang, Q., Smith, G., Wu, Y., and Mohring, R.: Catalytic hydrolysis of sodium borohydride in an auto-thermal fixed-bed reactor. International Journal of Hydrogen Energy 31, 961-965. (2006)
Zhang, Q., Smith, G. M., and Wu, Y.: Catalytic hydrolysis of sodium borohydride in an integrated reactor for hydrogen generation. International Journal of Hydrogen Energy 32, 4731-4735. (2007)
Zhang, X., Zhao, J., Cheng, F., Liang, J., Tao, Z., and Chen, J. Electroless-deposited Co-P catalysts for hydrogen generation from alkaline NaBH4 solution. International Journal of Hydrogen Energy In Press, Corrected Proof.
Zhao, J., Ma, H., and Chen, J.: Improved hydrogen generation from alkaline NaBH4 solution using carbon-supported Co-B as catalysts. International Journal of Hydrogen Energy 32, 4711-4716. (2007)
Zhu, A. L., Teo, M. Y., and Kulinich, S. A.: A novel improvement on nano-deposition of Ru on Pt for fuel cell applications. Applied Catalysis A: General 352, 17-26. (2009)
Özkar, S., and ZahmakIran, M.: Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst. Journal of Alloys and Compounds 404-406, 728-731. (2005)
陳俊翰: 以銅離子為化學鍍鎳磷鍍液之穩定劑時其析鍍行為之探討, 國立成功大學. (2004)
賴泓均: 奈米白金/金屬氧化物複合觸媒催化化學氫反應研究, 國立台灣大學. (2006)
王淑玲: 硼氫化鈉的儲氫系統研究,國立成功大學. (2008)