| 研究生: |
曹家瑜 Cao, Jia-Yu |
|---|---|
| 論文名稱: |
射頻磁控濺鍍法成長摻鎵之鉍銅硒氧薄膜 RF magnetron sputter deposition of Ga-doped BiCuSeO films |
| 指導教授: |
齊孝定
Qi, Xiao-Ding |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 鉍銅硒氧 、薄膜成長 、射頻磁控濺鍍法 |
| 外文關鍵詞: | BiCuSeO, film growth, sputtering |
| 相關次數: | 點閱:68 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鉍銅硒氧(BiCuSeO)為P型半導體,擁有特殊的層狀結構,由絕緣層(Bi2O2)2+與導電層(Cu2Se2)2-沿C軸相互交疊而成,此結構造就了鉍銅硒氧的高導電率與低熱傳導係數,被廣泛研究作為熱電材料之用。另一方面,鉍銅硒氧在鍍膜環境(即高真空低氧分壓)下可以穩定存在,且其晶格常數與常見的氧化物基板鈦酸鍶(SrTiO3)有極佳的匹配度,所以非常適合作為氧化物薄膜元件之底電極材料。但是鉍銅硒氧中的Se和Bi容易揮發,造成熱穩定性較差,給後續薄膜成長帶來困難。先前塊材研究發現摻雜Ga可以提升熱穩定性,所以本研究期望以射頻磁控濺鍍法於鈦酸鍶(100)單晶基板上成長摻鎵之鉍銅硒氧(BiCu0.95Ga0.05SeO)薄膜,控制基板溫度以及鍍率(檔板開關時間)等製程參數,探討其對於薄膜結晶特性以及熱穩定性的影響。
摻鎵之鉍銅硒氧薄膜的XRD結果顯示,隨著檔板關閉時間減短,出現BiSe雜相的繞射訊號,表示BiSe在較快的濺鍍速率下較容易生成;隨著檔板關閉時間增加,可以大幅度的降低甚至去除BiSe二次相。由此可知本研究成功以射頻磁控濺鍍法製備出單相的摻鎵鉍銅硒氧薄膜。此外,於較低的基板溫度下(300 oC、350 oC),由XRD繞射結果可以觀察到所成長的摻鎵鉍銅硒氧具有(001)的擇優取向,成長溫度350 oC時由二次電子影像可以觀察到立方顆粒的結晶。在高溫(>400 oC)的基板溫度,則是觀察到具有(102)擇優取向的摻鎵鉍銅硒氧薄膜,並且其二次電子影像結果顯示表面結晶呈現平片狀。
另一方面,為探討摻鎵鉍銅硒氧薄膜的熱穩定性,本研究初步嘗試以連續製程製備鈦酸鍶/摻鎵之鉍銅硒氧/鐵酸鉍的雙層膜結構。在基板溫度為500 oC的製程參數下,XRD結果仍然可以觀察到鉍銅硒氧的繞射訊號,但隨著濺鍍時間增加,鉍銅硒氧繞射強度降低。此外,本實驗室先前的研究結果顯示,在高溫的連續製程中,鉍銅硒氧會完全被分解,因此,與純鉍銅硒氧相比,摻雜鎵確實提升鉍銅硒氧薄膜的熱穩定性,但因其並未阻止鉍的揮發,故效果仍有限。
In this research, we attempted to grow epitaxial BiCu0.95Ga0.05SeO (BCSO:Ga) thin films on SrTiO¬3(100) single crystal substrates for applications as the bottom electrode on the popular substrate SrTiO3. The films were grown by RF magnetron sputtering method. The Ga doping effects on the film growth of BiCuSeO and its thermal stability were investigated.
The results of BCSO:Ga films show that as the shutter closing time decreases, the BiSe heterophase appears. As the shutter closing time increases, the BiSe heterophase can be removed. A single-phase BCSO:Ga thin film was successfully grown by RF magnetron sputtering method in this research. In addition, we can observe the BCSO:Ga thin films have (001) preferred orientation at a lower substrate temperature (300 oC, 350 oC). Secondary electron images can observe the cubic crystal at 350 oC.
In order to investigate the thermal stability of BCSO:Ga thin films, a continuous process was used to prepare SrTiO3 substrate/BCSO:Ga/BiFeO3(BFO) films structure. Under the substrate temperature of 500 oC, the results can still observe the BCSO:Ga films. As the sputtering time increases, the intensity of BCSO:Ga diffraction signal decreases. Comparing with pure BCSO thin films, BCSO:Ga thin films indeed improve its thermal stability. But, it does not prevent the volatilization of Bi, the effect is still limited.
1. B. Allouche, Y. Gagou, F. Le Marrec, M.-A. Fremy, M. El Marssi, "Bipolar resistive switching and substrate effect in GdK2Nb5O15 epitaxial thin films with tetragonal tungsten bronze type structure", Materials and Design, vol.112 (2016) 80–87.
2. K. Tahmasebi, A. Barzegar, J. Ding, T.S. Herng, A. Huang, S. Shannigrahi, "Magnetoelectric effect in Pb(Zr0.95Ti0.05)O3 and CoFe2O4 heteroepitaxial thin film composite", Materials and Design, vol. 32 (2011) 2370–2373.
3. S.P. Alpay, V. Nagarajan, L.A. Bendersky, M.D. Vaudin, S. Aggarwal, R. Ramesh, A.L. , "Roytburd, Effect of the electrode layer on the polydomain structure of epitaxial PbZr0.2Ti0.8O3 thin films", Journal of Applied Physics, vol. 85 (1999) 3271–3277.
4. J.M. Song, L.H. Luo, X.H. Dai, A.Y. Song, Y. Zhou, Z.N. Li, J.T. Liang, B.T. Liu, "Switching properties of epitaxial La0.5Sr0.5CoO3/ Na0.5Bi0.5TiO3 / La0.5Sr0.5CoO3 ferroelectric capacitor", RSC Advances, vol. 8 (2018) 4372–4376.
5. H.Y. Lee, C.H. Hsu, Y.W. Hsieh, Y.H. Chen, Y.C. Liang, T.B. Wu, L.J. Chou, "Preparation of heteroepitaxial LaNiO3 thin films on a SrTiO3 substrate for growing an artificial superlattice with RF sputtering", Materials Chemistry and Physics, vol. 92 (2005) 585–590.
6. T. Yu, Y.F. Chen, Z.G. Liu, S.B. Xiong, L. Sun, X.Y. Chen, L.J. Shi, N.B. Ming, "Epitaxial Pb(Zr0.53Ti0.47)O3/LaNiO3 heterostructures on single crystal substrates', Applied Physics Letter, vol. 69 (1996) 2092–2094.
7. C.Y. Guo, X. Qi, "RF magnetron sputter deposition and electrical properties of La and Y doped SrTiO3 epitaxial films", Materials and Design, vol. 179 (2019), no.107888
8. W. Siemons, G. Koster, A. Vailionis, H. Yamamoto, D.H.A. Blank, M.R. Beasley, "Dependence of the electronic structure of SrRuO3 and its degree of correlation on cation off-stoichiometr"', Physics Review, B 76 (2007), no.075126.
9. S. Madhukar, S. Aggarwal, A.M. Dhote, R. Ramesh, A. Krishnan, D. Keeble, E. Poindexter, "Effect of oxygen stoichiometry on the electrical properties of La0.5Sr0.5CoO3 electrodes", Journal of Applied Physics, vol. 81 (1997) 3543–3547.
10. L. Qiao, X. Bi, "Direct observation of Ni3+ and Ni2+ in correlated LaNiO3−δ films", EPL 93 (2011), no. 57002.
11. Nicola A. Spaldin, Manfred Fiebig, "The Renaissance of Magnetoelectric Multiferroics", Science, 309(2005)391-392.
12. P. Fischer,M. Polomska,,I. Sosnowska,M. Szymanski, "Temperature dependence of the crystal and magnetic structures of BiFeO3 ", Journal of Physics C:Solid State Physics , 13(1980)1931-1940.
13. Popov,Yu.F.,Kadomtseva,A.M.,Vorobev,G.P. and Zvezdin,A.K., "Discovery of the linear magnetoelectric effect in magnetic ferroelectric BiFeO3 in a strong magnetic field", Ferroelectric, 162(1994)135-140.
14. J. R. Teague, R. Gerson, and W. J. James, "Dielectric Hysteresis in Single Crystal BiFeO3", Solid State Communications, 8 (1970), 1073.
15. W. J. Lin, W. C. Chang, and X. D. Qi, "Exchange Bias and Magneto-Resistance in an All-Oxide Spin Valve with Multi-Ferroic BiFeO3 as the Pinning Layer", Acta Materialia, 61 (2013), 7444-7453.
16. 林蔚叡, 博士論文, "以鐵酸鉍複鐵式材料為釘札層製作全氧化物自旋閥之研究", 成功大學材料科學及工程學系 (2014).
17. 黃美靜, 碩士論文, "射頻磁控濺鍍法成長鉍銅硒氧磊晶薄膜", 成功大學材料科學及工程學系 (2018).
18. L. D. Zhao, J. Q. He, D. Berardan, Y. H. Lin, J. F. Li, C. W. Nan, and N. Dragoe, "BiCuSeO Oxyselenides: New Promising Thermoelectric Materials", Energy & Environmental Science, 7 (2014), 2900-2924.
19. A. P. Richard, J. A. Russell, A. Zakutayev, L. N. Zakharov, D. A. Keszler, and J. Tate, "Synthesis, Structure, and Optical Properties of BiCuOCh (Ch=S, Se, and Te) ", Journal of Solid State Chemistry, 187 (2012), 15-19.
20. Y. Liu, L.-D. Zhao, Y. Zhu, Y. Liu, F. Li, M. Yu, D.-B. Liu, W. Xu, Y.-H. Lin, and C.- W. Nan, "Synergistically Optimizing Electrical and Thermal Transport Properties of BiCuSeO via a Dual-Doping Approach," Advanced Energy Materials, vol. 6, 2016.
21. J. Suia, J. Lia, J. He, Y. L. Peic, D. Berardand, H. Wue, N. Dragoed, W. Caia and L. D. Zhao, "Texturation Boosts the Thermoelectric Performance of BiCuSeO Oxyselenides", Energy & Environmental Science, 6 (2013), 2916-2920.
22. C.L.Hsiao, X.Qi, "The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides", Acta Materialia, 102 (2016), 88-96.
23. C. Barreteau, David Berardan, N. Dragoe, "Studies on the thermal stability of BiCuSeO", Journal of Solid State Chemistry, 222 (2015), 53-59.
24. 王威凱, 碩士論文, "摻鎵之鉍銅硒氧化合物的合成及其熱電性質和空氣氣氛下化學穩定性之研究", 成功大學材料科學及工程學系 (2018).
25. A. M. Kusainova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, V. A. Dolgikh, and B. A. Popovkin, "New Layered Compounds with the General Composition (Mo) (Cuse), Where M=Bi, Nd, Gd, Dy, and BiOCuS - Syntheses and Crystal-Structure", Journal of Solid State Chemistry, 112 (1994), 189-191.
26. J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He, and L.-D. Zhao, "A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides", Energy & Environmental Science, vol. 5, 2012.
27. L. D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. Pinsard-Gaudart, and N. Dragoe, "Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials", Applied Phys-ics Letters, vol. 97, 2010.
28. A. Bhaskar, R.T. Lai, K.C. Chang, C.J. Liu, "High thermoelectric performance of BiCuSeO prepared by solid statereaction and sol-gel process", Scripta Materialia, vol. 134 (2017), 100-104
29. J. Wu, F. Li, T.R. Wei, Z. Ge, F. Kang, J. He, J.F. Li, "Mechanical Alloying and Spark Plasma Sintering of BiCuSeO Oxyselenide: Synthesis Process and Thermoelectric Properties", Journal of the American Ceramic Society, vol. 99 (2016), 507-514.
30. H. Zhua, T. Sub, H. Lic, C. Pud, D. Zhoud, P. Zhua, X. Wang, "High pressure synthesis, structure and thermoelectric properties of BiCuChO(Ch=S,Se,Te)", Journal of the European Ceramic Society, vol. 37 (2017) 1541–1546
31. F. Li, T.R. Wei, F. Kang, J.F. Li, "Thermal stability and oxidation resistance of BiCuSeO based thermoelectric ceramics", Journal of Alloys and Compounds, vol. 614 (2014), 394-400.
32. T. Sato, H. Kohri, T. Yagasaki, "Thermoelectric Properties and Thermal Stability of BiCuSeO", Journal of Electronic Materials, vol. 45 (2016), 5521-5525.
33. J. Tate, P.F. Newhouse, R. Kykyneshi, P.A. Hersh, J. Kinney, D.H. McIntyre, D.A. Keszler, "Chalcogen-based transparent conductors", Thin Solid Films, vol. 516 (2008), 5795-5799.
34. A. Zakutayev, P. F. Newhouse, R. Kykyneshi, P. A. Hersh, D. A. Keszler, and J. Tate, "Pulsed Laser Deposition of BiCuOSe Thin Films", Applied Physics a-Materials Science & Processing, 102 (2011), 485-92.
35. X. L. Wu, J. L. Wang, H. R. Zhang, S. F. Wang, S. J. Zhai, Y. G. Li, D. Elhadj, and G. S. Fu, "Epitaxial Growth and Thermoelectric Properties of c-axis Oriented Bi1-xPbxCuSeO Single Crystalline Thin Films", Crystengcomm, 17 (2015), 8697-8702.
36. X. L. Wu, L. J. Gao, P. Roussel, E. Dogheche, J. L. Wang, G. S. Fu, and S. F. Wang, "Growth of c-axis-Oriented BiCuSeO Thin Films Directly on Si Wafers", Journal of the American Ceramic Society, 99 (2016), 3367-3370.
37. M. Ishizawa, H. Fujishiro, T. Naito, A. Ito, T. Goto, "Crystal orientation, crystallinity, and thermoelectric properties of Bi0.9Sr0.1CuSeO epitaxial films grown by pulsed laser deposition", Japanese Journal of Applied Physics, vol. 57 (2018), no.025502
38. D. Yuan, S. Guo, S. Hou, Y. Ma, J. Wang, S. Wang, "Enhanced Thermoelectric Performance of c-Axis-Oriental Epitaxial Ba-Doped BiCuSeO Thin Films", Nanoscale Research Letters, (2018), 13:382
39. M. Mahesh Kumar,V. R. Pallar,K. Srinivas and S. V. Suryanarayana, "Ferroelectricity in a pure BiFeO3 ceramic", Applied Physics Letters, 76 (2000),2764.
40. Jung-Hoon Lee, Min-Ae Oak, Hyoung Joon Choi, Jong Yeog Sonc and Hyun Myung Jang, "Rhombohedral–orthorhombic morphotropic phase boundary in BiFeO3-based multiferroics: first-principles prediction", Journal of Materials Chemistry, 22 (2012), 1667–1672.
41. T. Kimura,T. Goto,H. Shintani,K. Ishizaka,T. Arima and Y. Tokura, "Magnetic control of ferroelectric polarization", Nature, 55 (2003), 426.
42. M. Fiebig,Th. Lottermoser,D. Fro ̈hlich,A. V. Goltsev and R. V. Pisarev, "Observation of coupled magnetic and electric domains", Nature, 818 (2002), 419
43. Milton Ohring, "Materials Science of Thin Films", Academic Press Inc, (1992), 307-354.
44. 羅易平, 碩士論文, "鉍銅硒氧薄膜製備及結構分析", 成功大學材料科學及工程學系 (2017).
45. 劉建豪, 碩士論文, "摻鐵之鉍銅硒氧塊材及薄膜的合成性質之研究", 成功大學材料科學及工程學系 (2018).
46. 陳冠綸, 碩士論文, "不同Ni/Zn比例對於鎳鋅鐵氧-鐵酸鉍複合材料磁電性質影響之研究", 成功大學材料科學及工程學系 (2018).