| 研究生: |
蔡志杰 Tsai, Chih-Chieh |
|---|---|
| 論文名稱: |
探討二甲基矽氧烷表面及微柱陣列蝕刻後之疏水性 Investigation of hydrophobicity of etched polydimethylsiloxane surface and micropillars array |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | PDMS 、圓柱表面 、濕潤轉變 、卡西狀態 、超疏水表面 |
| 外文關鍵詞: | polydimethylsiloxane (PDMS), micropillar array, droplet wetting transition, contact angle, Cassie and Wenzel state |
| 相關次數: | 點閱:54 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超疏水表面在近年來引起廣泛的研究與討論,於材料的表面製備微陣列並透過靜態接觸角或傾斜角的分析,可以了解並透過特定參數去轉換表面的親疏水特性。本研究利用CNC微鑽法雕刻出規則尺寸的陣列模具,透過PDMS高分子翻模並加以蝕刻, 探討陣列的間距及高度等參數以及蝕刻對於接觸角的影響。將不同間距、不同高度的PDMS陣列進行蝕刻,觀察在不同蝕刻時間下接觸角的變化,我們發現隨著蝕刻時間增加,陣列的間距增大,液滴狀態轉換符合與接觸角先增後降的趨勢吻合,且表面狀態轉換時之陣列間距與直徑比值都接近。此外,我們比較蝕刻與未蝕刻的陣列,發現蝕刻後的陣列雖然接觸角並未有明顯的提升,但液滴的接觸角變化較不劇烈,推測可能是蝕刻後形狀變化造成的影響。我們亦研究不規則表面的疏水性質,將鋁塊蝕刻並翻模,製備出不規則的表面並探討粗糙度與接觸角的關係。
In this study, we investigated the hydrophobicity of Polydimethylsiloxane (PDMS) surface with etched micropillars. The PDMS micropillars array was produced through casting the cylindrical wells on the polymethylmethacrylate substrate, which were generated by com-puter numerical control (CNC) machine. Then the PDMS micropillars array was dipped into the etching solution. As the etching time increased, the spacing between micropillars (W) increased and the diameter of the micropillars (D) decreased. It was found that the ses-sile drop remained Cassie-like state at small W/D. As W/D increased, the droplet gradually turned into the Cassie-Wenzel transition state and finally Wenzel-like state. With D and the height of the micropillars (H) between 100 and 300 micron, initial W didn’t affect the value of transition W/D.. Also the contact angle gradually decreased after transition W/D when using the micropillars array with different heights.
1. Barthlott, W. and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), p. 1-8 (1997)
2. Öner, D. and T.J. McCarthy, Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir, 16(20), p. 7777-7782 (2000)
3. McHale, G., N. Shirtcliffe, and M. Newton, Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir, 20(23), p. 10146-10149 (2004)
4. Young, T., An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, p. 65-87 (1805)
5. Overton, J.K., et al., High precision self-alignment using liquid surface tension for additively manufactured micro components. Precision Engineering, 40, p. 230-240 (2015)
6. Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8), p. 988-994 (1936)
7. Wenzel, R.N., Surface Roughness and Contact Angle. The Journal of Physical Chemistry, 53(9), p. 1466-1467 (1949)
8. Nakajima, A., K. Hashimoto, and T. Watanabe, Recent studies on super-hydrophobic films. Monatshefte für Chemie/Chemical Monthly, 132(1), p. 31-41 (2001)
9. 9 Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 40, p. 546-551 (1944)
10. Herminghaus, S., Roughness-induced non-wetting. EPL (Europhysics Letters), 52(2), p. 165 (2000)
11. Wang, S. and L. Jiang, Definition of Superhydrophobic States. Advanced Materials, 19(21), p. 3423-3424 (2007)
12. He, B., N.A. Patankar, and J. Lee, Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir, 19(12), p. 4999-5003 (2003)
13. Yoshimitsu, Z., et al., Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir, 18(15), p. 5818-5822 (2002)
14. Jung, Y.C. and B. Bhushan, Wetting transition of water droplets on superhydrophobic patterned surfaces. Scripta Materialia, 57(12), p. 1057-1060 (2007)
15. Patankar, N.A., Transition between superhydrophobic states on rough surfaces. Langmuir, 20(17), p. 7097-7102 (2004)
16. Reyssat, M., J. Yeomans, and D. Quéré, Impalement of fakir drops. EPL (Europhysics Letters), 81(2), p. 26006 (2007)
17. Bhushan, B. and Y.C. Jung, Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy, 107(10), p. 1033-1041 (2007)
18. Smyth, K., et al. Dynamic wetting on superhydrophobic surfaces: Droplet impact and wetting hysteresis. in Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference on. 2010. IEEE.
19. Ma, M. and R.M. Hill, Superhydrophobic surfaces. Current opinion in colloid & interface science, 11(4), p. 193-202 (2006)
20. Qu, M., et al., Fabrication of superhydrophobic surfaces by a Pt nanowire array on Ti/Si substrates. Nanotechnology, 19(5), p. 055707 (2008)
21. Cheng, Z., J. Gao, and L. Jiang, Tip geometry controls adhesive states of superhydrophobic surfaces. Langmuir, 26(11), p. 8233-8238 (2010)
22. Greiner, A. and J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(30), p. 5670-5703 (2007)
23. Lim, J.-M., et al., Superhydrophobic films of electrospun fibers with multiple-scale surface morphology. Langmuir, 23(15), p. 7981-7989 (2007)
24. Zhu, Y., et al., Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments. Advanced Functional Materials, 16(4), p. 568-574 (2006)
25. Sarkar, M.K., et al., Design of an outstanding super-hydrophobic surface by electro-spinning. Applied Surface Science, 257(15), p. 7003-7009 (2011)
26. Yang, S., et al., Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol–gel process. Chemistry of Materials, 20(4), p. 1233-1235 (2008)
27. Fan, Y., et al., Study on fabrication of the superhydrophobic sol–gel films based on copper wafer and its anti-corrosive properties. Applied Surface Science, 258(17), p. 6531-6536 (2012)
28. Tsai, H.-J. and Y.-L. Lee, Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces. Langmuir, 23(25), p. 12687-12692 (2007)
29. Kim, Y.H., et al., Hierarchical nanoflake surface driven by spontaneous wrinkling of polyelectrolyte/metal complexed films. ACS nano, 6(2), p. 1082-1093 (2012)
30. Li, Y., L. Li, and J. Sun, Bioinspired Self‐Healing Superhydrophobic Coatings. Angewandte Chemie, 122(35), p. 6265-6269 (2010)
31. Shan Peng, et al., Chemically Stable and Mechanically Durable Superamphiphobic aluminum surface with a Micro/Nanoscale Binary Structure. Appl. Mater. Interfaces, 2014, 6 (17), pp 15188–15197
32. Mengying Long et al. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane. M. Long et al. / Journal of Colloid and Interface Science 508 (2017) 18–27
33. Krupenkin, T., et al., Electrically tunable superhydrophobic nanostructured surfaces. Bell Labs Technical Journal, 10(3), p. 161-170 (2005)
34. Marquez-Velasco, J., et al., Stable superhydrophobic surfaces induced by dual-scale topography on SU-8. Microelectronic Engineering, 87(5), p. 782-785 (2010)
35. Kwon, Y., et al., Design of surface hierarchy for extreme hydrophobicity. Langmuir, 25(11), p. 6129-6136 (2009)
36. D’urso, B., J. Simpson, and M. Kalyanaraman, Emergence of superhydrophobic behavior on vertically aligned nanocone arrays. Applied physics letters, 90(4), p. 044102 (2007)
37. D'Urso, B., J.T. Simpson, and M. Kalyanaraman, Nanocone array glass. Journal of Micromechanics and Microengineering, 17(4), p. 717 (2007)
38. Tuteja, A., et al., Designing superoleophobic surfaces. Science, 318(5856), p. 1618-1622 (2007)
39. Ahuja, A., et al., Nanonails: A simple geometrical approach to electrically tunable superlyophobic surfaces. Langmuir, 24(1), p. 9-14 (2008)
40. Kim, S., E. Cheung, and M. Sitti, Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives. Langmuir, 25(13), p. 7196-7199 (2009)
41. Grigoryev, A., et al., Superomniphobic magnetic microtextures with remote wetting control. Journal of the American Chemical Society, 134(31), p. 12916-12919 (2012)
42. Liu, T. and C.-J. Kim, Turning a surface superrepellent even to completely wetting liquids. Science, 346(6213) (2014)
43. Cortese, B., et al., Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir, 24(6), p. 2712-2718 (2008)
44. Lee, S.E., et al., Flexible Superhydrophobic Polymeric Surfaces with Micro‐/Nanohybrid Structures Using Black Silicon. Macromolecular Materials and Engineering, 298(3), p. 311-317 (2013)
45. Migliaccio, C.P. and N. Lazarus, Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting. Applied Surface Science, 353, p. 269-274 (2015)
46. Im, M., et al., A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter, 6(7), p. 1401-1404 (2010)
47. Feng, L., et al., Petal effect: a superhydrophobic state with high adhesive force. Langmuir, 24(8), p. 4114-4119 (2008)
48. Stanton, M.M., et al., Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces. Journal of colloid and interface science, 367(1), p. 502-508 (2012)
49. Yong, J., et al., Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays. Langmuir, 29(10), p. 3274-3279 (2013)
50. Zhang, J. and S. Seeger, Superoleophobic coatings with ultralow sliding angles based on silicone nanofilaments. Angewandte Chemie International Edition, 50(29), p. 6652-6656 (2011)
51. Kang, S.M., et al., Robust superomniphobic surfaces with mushroom-like micropillar arrays. Soft Matter, 8(33), p. 8563-8568 (2012)
52. Xue, C.-H., X. Bai, and S.-T. Jia, Robust, self-healing superhydrophobic fabrics prepared by one-step coating of PDMS and octadecylamine. Scientific reports, 6 (2016)
53. Balakrisnan, B., S. Patil, and E. Smela, Patterning PDMS using a combination of wet and dry etching. Journal of Micromechanics and Microengineering, 19(4), p. 047002 (2009)
54. Deng, Y.-L. and Y.-J. Juang, Polydimethyl siloxane wet etching for three dimensional fabrication of microneedle array and high-aspect-ratio micropillars. Biomicrofluidics, 8(2), p. 026502 (2014)
55. Kusumaatmaja, H., et al., The collapse transition on superhydrophobic surfaces. EPL (Europhysics Letters), 81(3), p. 36003 (2008)
56. Deng, T., et al., Nonwetting of impinging droplets on textured surfaces. Applied Physics Letters, 94(13), p. 133109 (2009)
57. Kwon, H.-M., et al., Rapid deceleration-driven wetting transition during pendant drop deposition on superhydrophobic surfaces. Physical review letters, 106(3), p. 036102 (2011)
58. Chao-Lun Hsieh, Investigation of droplet sliding off and impinging on the micropillar array at hundreds of microns scale